-
摘要:
海洋沉积物中浮游有孔虫壳体重量同时受到上层海洋钙化过程和深海碳酸钙溶解作用的影响,是一种潜在的古海洋代用指标。基于全球大洋表层沉积物的指标现代过程校准,发现当深海碳酸根离子饱和度<20 μmol·kg−1,溶解作用开始显著影响浮游有孔虫壳体重量。易溶种的壳体重量对碳酸根离子饱和度的响应更加敏感,可以作为可靠的深海碳酸根离子饱和度代用指标。当深海碳酸根离子饱和度>20 μmol·kg−1,浮游有孔虫壳体重量可反映其钙化程度。基于该指标的古海洋学研究揭示了冰期旋回中浮游有孔虫钙化过程主要响应海水碳酸盐系统和温度变化;上新世以来太平洋深海碳酸根离子饱和度演化主要受控于海平面、南大洋冰盖/海冰和全球温盐环流变化。浮游有孔虫壳体重量指标为探索海洋碳循环演化提供了有力工具。
Abstract:The shell weights of planktonic foraminifera from marine sediments are influenced by both upper-ocean calcification and deep-ocean calcium carbonate dissolution, and are potential paleoceanographic proxies. Based on the global surface-sediment calibrations, dissolution begins to significantly affect planktonic foraminiferal shell weight when the deep-ocean carbonate ion saturation degree (CISD) is below 20 μmol·kg−1. The shell weights of dissolution-susceptible species are more sensitive to CISD changes, and thus can be used as reliable deep-ocean CISD proxies. When the deep-ocean CISD is above 20 μmol·kg−1, the shell weights of planktonic foraminifera can reflect the changes of their calcification degree. Previous paleoceanographic studies based on the shell weight proxies reveal that the calcifications of planktonic foraminifera mainly respond to the changes in seawater carbonate system and temperature during glacial-interglacial cycles. The evolutions of deep Pacific CISD since the Pliocene is controlled by the changes in sea level height, Southern Ocean ice-sheet/sea ice, and global thermohaline circulation. The planktonic foraminiferal shell weight proxy provides a powerful tool for exploring the evolution of ocean carbon cycle.
-
-
图 1 全球热带大洋表层沉积物P. obliquiloculata壳体重量与深海Δ[CO32-]的关系[14]
Figure 1.
图 2 全球热带大洋(A)以及单一海区中(B)表层沉积物N. dutertrei壳体重量与深海Δ[CO32-]的关系[14]
Figure 2.
图 4 南大洋南极带表层沉积物N. pachyderma(sin.)壳体重量与深海Δ[CO32-]的关系[17]
Figure 4.
图 5 T. sacculifer和N. dutertrei的壳体重量-深海Δ[CO32-]的经验校准公式[28]
Figure 5.
-
[1] Lohmann G P. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution[J]. Paleoceanography, 1995, 10(3): 445-457. doi: 10.1029/95PA00059
[2] Zeebe R E, Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Amsterdam: Elsevier, 2001.
[3] Wilson T. Salinity and the major elements of sea water[J]. Chemical Oceanography, 1975, 1(2): 365-413.
[4] Yu J M, Anderson R F, Rohling E J. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 changes[J]. Oceanography, 2014, 27(1): 16-25. doi: 10.5670/oceanog.2014.04
[5] Broecker W, Clark E. An evaluation of Lohmann's foraminifera weight dissolution index[J]. Paleoceanography, 2001, 16(5): 531-534. doi: 10.1029/2000PA000600
[6] Barker S, Elderfield H. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2[J]. Science, 2002, 297(5582): 833-836. doi: 10.1126/science.1072815
[7] Bijma J, Hönisch B, Zeebe R E. Impact of the ocean carbonate chemistry on living foraminiferal shell weight: comment on “Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea” by W. S. Broecker and E. Clark[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(11): 1-7.
[8] de Villiers S. Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera[J]. Marine Biology, 2004, 144(1): 45-49. doi: 10.1007/s00227-003-1183-8
[9] Barker S, Archer D, Booth L, et al. Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and the CO2 paradox of MIS 11[J]. Quaternary Science Reviews, 2006, 25(23-24): 3278-3293. doi: 10.1016/j.quascirev.2006.07.018
[10] Qin B B, Li T G, Xiong Z F, et al. Deepwater carbonate ion concentrations in the western tropical Pacific since 250 ka: evidence for oceanic carbon storage and global climate influence[J]. Paleoceanography, 2017, 32(4): 351-370. doi: 10.1002/2016PA003039
[11] Johnstone H J H, Schulz M, Barker S, et al. Inside story: an X-ray computed tomography method for assessing dissolution in the tests of planktonic foraminifera[J]. Marine Micropaleontology, 2010, 77(1-2): 58-70. doi: 10.1016/j.marmicro.2010.07.004
[12] Regenberg M, Beil S. Test appearance of the planktonic foraminifer Pulleniatina obliquiloculata as an indicator of calcite dissolution in deep-sea sediments[J]. Journal of Foraminiferal Research, 2016, 46(3): 224-236. doi: 10.2113/gsjfr.46.3.224
[13] Andersson A J. The oceanic CaCO3 cycle[M]//Treatise on Geochemistry (Second Edition). 2014, 8: 519-542.
[14] Qin B B, Li T G, Xiong Z F, et al. Calcification of planktonic foraminifer Pulleniatina obliquiloculata controlled by seawater temperature rather than ocean acidification[J]. Global and Planetary Change, 2020, 193: 103256. doi: 10.1016/j.gloplacha.2020.103256
[15] Berger W H. Planktonic foraminifera: selective solution and the lysocline[J]. Marine Geology, 1970, 8(2): 111-138. doi: 10.1016/0025-3227(70)90001-0
[16] Schiebel R, Spielhagen R F, Garnier J, et al. Modern planktic foraminifers in the high-latitude ocean[J]. Marine Micropaleontology, 2017, 136: 1-13. doi: 10.1016/j.marmicro.2017.08.004
[17] Song Q W, Qin B B, Tang Z, et al. Calcification of planktonic foraminifer Neogloboquadrina pachyderma (sinistral) controlled by seawater temperature rather than ocean acidification in the Antarctic Zone of modern Sothern Ocean[J]. Science China Earth Sciences, 2022, 65(9): 1824-1836. doi: 10.1007/s11430-021-9924-7
[18] Russell A D, Hönisch B, Spero H J, et al. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4347-4361. doi: 10.1016/j.gca.2004.03.013
[19] Moy A D, Howard W R, Bray S G, et al. Reduced calcification in modern Southern Ocean planktonic foraminifera[J]. Nature Geoscience, 2009, 2(4): 276-280. doi: 10.1038/ngeo460
[20] de Moel H, Ganssen G M, Peeters F J C, et al. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?[J]. Biogeosciences, 2009, 6(9): 1917-1925. doi: 10.5194/bg-6-1917-2009
[21] Henehan M J, Evans D, Shankle M, et al. Size-dependent response of foraminiferal calcification to seawater carbonate chemistry[J]. Biogeosciences, 2017, 14(13): 3287-3308. doi: 10.5194/bg-14-3287-2017
[22] Marshall B J, Thunell R C, Henehan M J, et al. Planktonic foraminiferal area density as a proxy for carbonate ion concentration: a calibration study using the Cariaco Basin ocean time series[J]. Paleoceanography, 2013, 28(2): 363-376. doi: 10.1002/palo.20034
[23] Davis C V, Badger M P S, Bown P R, et al. The response of calcifying plankton to climate change in the Pliocene[J]. Biogeosciences, 2013, 10(9): 6131-6139. doi: 10.5194/bg-10-6131-2013
[24] Allen K A, Hönisch B, Eggins S M, et al. Trace element proxies for surface ocean conditions: a synthesis of culture calibrations with planktic foraminifera[J]. Geochimica et Cosmochimica Acta, 2016, 193: 197-221. doi: 10.1016/j.gca.2016.08.015
[25] Zarkogiannis S D, Antonarakou A, Tripati A, et al. Influence of surface ocean density on planktonic foraminifera calcification[J]. Scientific Reports, 2019, 9(1): 533. doi: 10.1038/s41598-018-36935-7
[26] Aldridge D, Beer C J, Purdie D A. Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean[J]. Biogeosciences, 2012, 9(5): 1725-1739. doi: 10.5194/bg-9-1725-2012
[27] Pinsonneault A J, Matthews H D, Galbraith E D, et al. Calcium carbonate production response to future ocean warming and acidification[J]. Biogeosciences, 2012, 9(6): 2351-2364. doi: 10.5194/bg-9-2351-2012
[28] Qin B B, Jia Q, Xiong Z F, et al. Sustained deep Pacific carbon storage after the Mid-Pleistocene Transition linked to enhanced Southern Ocean stratification[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097121.
[29] Qin B B, Li T G, Xiong Z F, et al. Deep-water carbonate ion concentrations in the western tropical Pacific since the Mid-Pleistocene: a major perturbation during the Mid-Brunhes[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6876-6892. doi: 10.1029/2018JC014084
[30] Qin B B, Li T G, Xiong Z F, et al. Influences of Atlantic Ocean thermohaline circulation and Antarctic ice-sheet expansion on Pliocene deep Pacific carbonate chemistry[J]. Earth and Planetary Science Letters, 2022, 599: 117868. doi: 10.1016/j.jpgl.2022.117868
[31] Yu J M, Elderfield H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state[J]. Earth and Planetary Science Letters, 2007, 258(1-2): 73-86. doi: 10.1016/j.jpgl.2007.03.025
[32] Yu J M, Anderson R F, Jin Z D, et al. Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial-interglacial cycle[J]. Quaternary Science Reviews, 2013, 76: 39-52. doi: 10.1016/j.quascirev.2013.06.020
[33] Farmer J R. Deepening the late Quaternary's deep ocean carbon mysteries[J]. Geophysical Research Letters, 2022, 49(13): e2022GL099161.
[34] Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 115-149. doi: 10.2113/0540115
[35] Ziveri P, Gray W R, Anglada-Ortiz G, et al. Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean[J]. Nature Communications, 2023, 14(1): 805. doi: 10.1038/s41467-023-36177-w
[36] Sulpis O, Jeansson E, Dinauer A, et al. Calcium carbonate dissolution patterns in the ocean[J]. Nature Geoscience, 2021, 14(6): 423-428. doi: 10.1038/s41561-021-00743-y
-