-
摘要:
消费级无人机的普及使得海滩监测有新的选择,但不同无人机平台的监测精度与适用情景各异,有必要进行适用性评价。本研究利用两种无人机平台(精灵4 RTK、经纬M300 RTK)与两种地形监测技术(SFM摄影测量、激光雷达)在象山县大沙海滩进行海滩地形监测,计算低空无人机监测海滩地形的平面误差与高程误差,分析不同无人机平台准同步监测结果之间的差异及其原因;利用无人机监测结果分析大沙海滩的地形特征,讨论海滩地形冬季前后变化。分析结果显示,无人机平台能胜任高精度的海滩地形变化监测工作。
Abstract:With the development of consumer-grade unmanned aerial vehicles (UAVs), new possibilities for beach monitoring are now available. However, different monitoring accuracies and suitability exist across different UAV platforms. We employed two UAV platforms, namely the DJI Phantom 4 RTK and DJI M300 RTK, in combination with two terrain monitoring techniques: Structure from Motion (SFM) photogrammetry and Light Detection and Ranging (LIDAR), to undertake beach terrain monitoring at Dasha Beach in Xiangshan County, Zhejiang, East China. The planimetric and elevation errors of low-altitude UAV measurements were assessed. Differences among the synchronously monitored results of diverse UAV platforms were analyzed, and their respective application scenarios were discussed. Additionally, we analyzed beach terrain characteristics and investigated beach terrain variations before and after winter. The analysis results show that the drone platform is capable of performing high-precision monitoring of beach topographic changes.
-
表 1 无人机平台硬件参数
Table 1. Hardware parameters of two drone platforms used in this study
硬件参数 精灵4 RTK 经纬M300 RTK 硬件成本/(万元/台) 3.5 15.0 负载模块 测绘相机 测绘相机;激光雷达 测绘相机像素 有效像素2000万 有效像素2000万 激光雷达精度/m① — 平面精度0.1;高程精度0.05 飞行器定位精度② 垂直精度1.5 cm
水平精度1 cm垂直精度1.5 cm
水平精度1 cm最大水平飞行速度/(m/s) 14 17 最大信号范围/km 7 15 单组电池飞行时间/min 30 55 注:① 为生产商提供的技术参数,禅思L1的激光雷达系统在飞行高度为50 m的情况下平面精度为0.1 m,高程精度为0.05 m。② 表中所列定位精度为RTK启用且有固定解时的初始精度,此外,飞行器与起飞点的距离每增加1 km,误差也会增加1 mm。 表 2 不同测次的无人机平台及摄影技术参数
Table 2. Two drone platforms and photogrammetric parameters for different surveys
测次
编号测次日期 无人机平台 监测技术① 飞行高
度/m潮相
及潮位航向重
叠/%旁向重
叠/%覆盖面
积/km2GSD②
(cm/pixel)照片数
量/张飞行历
时/minA 2022-12-23 精灵4 RTK SFM摄影测量
(井字飞行)60 大潮
低潮位80 80 0.352 2.30 1921 82 B 2023-04-07 精灵4 RTK SFM摄影测量
(井字飞行)60 大潮
低潮位80 80 0.370 2.38 1918 81 C 2023-04-09 精灵4 RTK SFM摄影测量
(2D)30 中潮
低潮位80 70 0.044 1.13 371 16 D 2023-04-09 经纬M300 RTK SFM摄影测量
(2D)30 中潮
低潮位70 70 0.045 1.01 487 20 E 2023-04-09 经纬M300 RTK 单回波激光雷达
(LiDAR)30 中潮
低潮位70 70 0.045 —③ —③ 20 注:① “井字飞行模式”的飞行姿态为倾斜摄影,航迹线有垂直于岸线及平行于岸线的两组,似“井”字(图2a,图2b);“SFM摄影测量(2D)模式”飞行时所得数据为正射影像,仅有单方向航线(图2c、d);“单回波激光雷达”对一个目标点位仅打出一个激光点、且最多接收1个回波。
② 地面采样间隔(GSD,Ground Sampling Distance),单位为cm/pixel,其数值大小与相对地面的飞行高度有关,表内GSD数据为监测区域内地面采样间隔平均值;③ 激光雷达测量所得数据类型为数字点云,无影像数据。表 3 像控点、检查点和验证点的数量
Table 3. The quantity of image control points, check points, and validation points
测次编号 地面像控点数量/个 检查点数量/个 验证点数量/个 A 6 1 33 B 7 1 40 C 6 5 60 D 7 4 60 表 4 SFM摄影测量像控点误差
Table 4. The positioning error of image control points in SFM photogrammetry
cm 测次编号 x向 y向 p z向 d A 0.65 0.98 1.16 3.40 3.59 B 2.20 2.17 3.09 2.23 3.81 C 1.04 0.90 1.38 1.36 1.94 D 1.42 0.72 1.59 1.54 2.21 表 5 准同步监测不同测次数据离散程度
Table 5. The data dispersion level of measurement in different surveys in quasi-synchronous monitoring
测次编号 协方差cov/m² 测次C (P4-SFM) 1.923 测次D (M300-SFM) 1.905 测次E (M300-LiDAR) 1.902 表 6 低空数字航摄与数据处理规范规定的点位误差
Table 6. The positioning errors specified in China’s national standard for low-altitude digital aerial photography and data processing
点位类型 成图比例尺 平面误差/cm 高程误差/cm 平地 丘陵地 山地 高山地 平地 丘陵地 山地 高山地 像控点 1∶500 15 15 20 20 11 21 26 40 1∶1000 30 30 40 40 21 26 40 75 1∶2000 60 60 80 80 21 26 60 90 检查点与验证点 1∶500 25 25 35 35 19 35 40 60 1∶1000 50 50 70 70 35 40 60 120 1∶2000 100 100 140 140 35 40 100 150 -
[1] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 18190-2017 海洋学术语 海洋地质学[S]. 北京: 中国标准出版社, 2017
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 18190-2017 Oceanological Terminology—Marine Geology[S]. Beijing: Standards Press of China, 2017.
[2] Chen B Q, Yang Y M, Wen H T, et al. High-resolution monitoring of beach topography and its change using unmanned aerial vehicle imagery[J]. Ocean & Coastal Management, 2018, 160:103-116.
[3] 蔡锋, 苏贤泽, 刘建辉, 等. 全球气候变化背景下我国海岸侵蚀问题及防范对策[J]. 自然科学进展, 2008, 18(10):1093-1103 doi: 10.3321/j.issn:1002-008X.2008.10.002
CAI Feng, SU Xianze, LIU Jianhui, et al. The countermeasures of coastal erosion based on the global climate change[J]. Progress in Natural Science, 2008, 18(10):1093-1103. doi: 10.3321/j.issn:1002-008X.2008.10.002
[4] Luijendijk A, Hagenaars G, Ranasinghe R, et al. The state of the world's beaches[J]. Scientific Reports, 2018, 8(1):6641. doi: 10.1038/s41598-018-24630-6
[5] Vousdoukas M I, Ranasinghe R, Mentaschi L, et al. Sandy coastlines under threat of erosion[J]. Nature Climate Change, 2020, 10(3):260-263. doi: 10.1038/s41558-020-0697-0
[6] 李兵, 蔡锋, 曹立华, 等. 福建砂质海岸侵蚀原因和防护对策研究[J]. 台湾海峡, 2009, 28(2):156-162
LI Bing, CAI Feng, CAO Lihua, et al. Causes of beach erosion in Fujian and preventions[J]. Journal of Oceanography in Taiwan Strait, 2009, 28(2):156-162.
[7] 王广禄, 蔡锋, 苏贤泽, 等. 泉州市砂质海岸侵蚀特征及原因分析[J]. 台湾海峡, 2008, 27(4):547-554
WANG Guanglu, CAI Feng, SU Xianze, et al. Characters of sand beach erosion in Quanzhou and it causes[J]. Journal of Oceanography in Taiwan Strait, 2008, 27(4):547-554.
[8] 罗时龙, 蔡锋, 王厚杰. 海岸侵蚀及其管理研究的若干进展[J]. 地球科学进展, 2013, 28(11):1239-1247
LOU Shilong, CAI Feng, WANG Houjie. Development of coastal erosion and management[J]. Advances in Earth Science, 2013, 28(11):1239-1247.
[9] 王颖, 吴小根. 海平面上升与海滩侵蚀[J]. 地理学报, 1995, 50(2):118-127 doi: 10.3321/j.issn:0375-5444.1995.02.003
WANG Ying, WU Xiaogen. Sea level rise and beach response[J]. Acta Geographica Sinica, 1995, 50(2):118-127. doi: 10.3321/j.issn:0375-5444.1995.02.003
[10] Muzirafuti A, Randazzo G, Lanza S. UAV application for coastal area monitoring: a case study of Sant’Alessio Siculo, Sicily[C]//Proceedings of 2022 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea). Milazzo: IEEE, 2022: 143-147.
[11] Baily B, Nowell D. Techniques for monitoring coastal change: a review and case study[J]. Ocean & Coastal Management, 1996, 32(2):85-95.
[12] Westoby M J, Lim M, Hogg M, et al. Cost-effective erosion monitoring of coastal cliffs[J]. Coastal Engineering, 2018, 138:152-164. doi: 10.1016/j.coastaleng.2018.04.008
[13] Turner I L, Harley M D, Short A D, et al. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia[J]. Scientific Data, 2016, 3(1):160024. doi: 10.1038/sdata.2016.24
[14] Feagin R A, Williams A M, Popescu S, et al. The use of terrestrial laser scanning (TLS) in dune ecosystems: the lessons learned[J]. Journal of Coastal Research, 2014, 30(1):111-119.
[15] Brooks S M, Spencer T. Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK[J]. Geomorphology, 2010, 124(1-2):26-41. doi: 10.1016/j.geomorph.2010.08.005
[16] Pardo-Pascual J E, Almonacid-Caballer J, Ruiz L A, et al. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision[J]. Remote Sensing of Environment, 2012, 123:1-11. doi: 10.1016/j.rse.2012.02.024
[17] Pierre G. Processes and rate of retreat of the clay and sandstone sea cliffs of the northern Boulonnais (France)[J]. Geomorphology, 2006, 73(1-2):64-77. doi: 10.1016/j.geomorph.2005.07.002
[18] Montreuil A L, Bullard J, Chandler J. Detecting seasonal variations in embryo dune morphology using a terrestrial laser scanner[J]. Journal of Coastal Research, 2013, 65(sp2):1313-1318.
[19] Grohmann C H, Garcia G P B, Affonso A A, et al. Dune migration and volume change from airborne LiDAR, terrestrial LiDAR and Structure from Motion-Multi View Stereo[J]. Computers & Geosciences, 2020, 143:104569.
[20] Troy C D, Cheng Y T, Lin Y C, et al. Rapid lake Michigan shoreline changes revealed by UAV LiDAR surveys[J]. Coastal Engineering, 2021, 170:104008. doi: 10.1016/j.coastaleng.2021.104008
[21] 毕海芸, 郑文俊, 曾江源, 等. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质, 2017, 39(4):656-674 doi: 10.3969/j.issn.0253-4967.2017.04.003
BI Haiyun, ZHENG Wenjun, ZENG Jiangyuan, et al. Application of SfM photogrammetry method to the quantitative study of active tectonics[J]. Seismology and Geology, 2017, 39(4):656-674. doi: 10.3969/j.issn.0253-4967.2017.04.003
[22] 魏占玉, Ramon A, 何宏林, 等. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 2015, 37(2):636-648
WEI Zhanyu, Ramon A, HE Honglin, et al. Accuracy analysis of terrain point cloud acquired by “structure from motion” using aerial photos[J]. Seismology and Geology, 2015, 37(2):636-648.
[23] Pitman S J, Hart D E, Katurji M H. Application of UAV techniques to expand beach research possibilities: a case study of coarse clastic beach cusps[J]. Continental Shelf Research, 2019, 184:44-53. doi: 10.1016/j.csr.2019.07.008
[24] 郭一栋, 林杭杰, 于谦, 等. 基于无人机SfM摄影测量的海岸盐沼前缘形态变化研究[J]. 海洋学报, 2022, 44(12):148-160
GUO Yidong, LIN Hangjie, YU Qian et al. Morphology of coastal salt marsh margins: a study using UAV-based Structure-from-Motion photogrammetry[J]. Haiyang Xuebao, 2022, 44(12):148-160.
[25] Westoby M J, Brasington J, Glasser N F, et al. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179:300-314. doi: 10.1016/j.geomorph.2012.08.021
[26] 国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 35018-2018 民用无人驾驶航空器系统分类及分级[S]. 北京: 中国标准出版社, 2018
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 35018-2018 Classification and grading for civil unmanned aircraft system[S]. Beijing: Standards Press of China, 2018.
[27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 14950-2009 摄影测量与遥感术语[S]. 北京: 中国标准出版社, 2009
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 14950-2009 Terms of photogrammetry and remote sensing[S]. Beijing: Standards Press of China, 2009.
[28] 国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 39612-2020 低空数字航摄与数据处理规范[S]. 北京: 中国标准出版社, 2020
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 39612-2020 Specifications for low-altitude digital aerial photography and data processing[S]. Beijing: Standards Press of China, 2020.
[29] 中国民用航空局. 中国民用航空总局规章目录[EB/OL]. (2008-01-20)[2023-07-19]. http://www.caac.gov.cn/XXGK/XXGK/ZFGW/201601/t20160122_27768.html
Civil Aviation Administration of China. Catalogue of regulations of the Civil Aviation Administration of China[EB/OL]. (2008-01-20)[2023-07-19]. http://www.caac.gov.cn/XXGK/XXGK/ZFGW/201601/t20160122_27768.html.
[30] 贝京阳, 陈杲, 俞晓天. 浙江省南田岛附近潮流特征分析[J]. 海洋湖沼通报, 2022, 44(5):60-66
BEI Jingyang, CHEN Gao, YU Xiaotian. Characterization of tidal current near Nantian Island, Zhejiang province[J]. Transactions of Oceanology and Limnology, 2022, 44(5):60-66.
[31] 象山县地方志编纂委员会. 象山县志: 第一册[M]. 北京: 方志出版社, 2020: 405-407
Xiangshan County Local Records Committee. Xiangshan County Annals: Volume 1[M]. Beijing: Local Records Publishing House, 2020: 405-407.
[32] Laporte-Fauret Q, Marieu V, Castelle B, et al. Low-cost UAV for high-resolution and large-scale coastal dune change monitoring using photogrammetry[J]. Journal of Marine Science and Engineering, 2019, 7(3):63. doi: 10.3390/jmse7030063
[33] Jaud M, Delacourt C, Le Dantec N, et al. Diachronic UAV photogrammetry of a sandy beach in Brittany (France) for a long-term coastal observatory[J]. ISPRS International Journal of Geo-Information, 2019, 8(6):267. doi: 10.3390/ijgi8060267
[34] Mancini F, Dubbini M, Gattelli M, et al. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments[J]. Remote Sensing, 2013, 5(12):6880-6898. doi: 10.3390/rs5126880
[35] Fonstad M A, Dietrich J T, Courville B C, et al. Topographic structure from motion: a new development in photogrammetric measurement[J]. Earth Surface Processes and Landforms, 2013, 38(4):421-430. doi: 10.1002/esp.3366
[36] Jaud M, Grasso F, Le Dantec N, et al. Potential of UAVs for monitoring mudflat morphodynamics (application to the seine estuary, France)[J]. ISPRS International Journal of Geo-Information, 2016, 5(4):50. doi: 10.3390/ijgi5040050