低空无人机平台应用于海滩地形监测的初步研究

陈奇, 张阳, 唐雯雯, 朱永兰, 何方婷, 宗羿冰, 贾建军. 低空无人机平台应用于海滩地形监测的初步研究[J]. 海洋地质与第四纪地质, 2023, 43(6): 55-68. doi: 10.16562/j.cnki.0256-1492.2023073001
引用本文: 陈奇, 张阳, 唐雯雯, 朱永兰, 何方婷, 宗羿冰, 贾建军. 低空无人机平台应用于海滩地形监测的初步研究[J]. 海洋地质与第四纪地质, 2023, 43(6): 55-68. doi: 10.16562/j.cnki.0256-1492.2023073001
CHEN Qi, ZHANG Yang, TANG Wenwen, ZHU Yonglan, HE Fangting, ZONG Yibing, JIA Jianjun. Application of low-altitude airspace UAVs in beach terrain monitoring[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 55-68. doi: 10.16562/j.cnki.0256-1492.2023073001
Citation: CHEN Qi, ZHANG Yang, TANG Wenwen, ZHU Yonglan, HE Fangting, ZONG Yibing, JIA Jianjun. Application of low-altitude airspace UAVs in beach terrain monitoring[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 55-68. doi: 10.16562/j.cnki.0256-1492.2023073001

低空无人机平台应用于海滩地形监测的初步研究

  • 基金项目: 自然资源部海洋空间资源管理技术重点实验室开放课题 “岬湾型海滩的剖面与沉积物特征及其对建设生态岸线的意义”(KF-2021-104);江苏省自然资源发展专项资金项目“江苏海岸带地质资源环境多要素监测网优化与动态监测”(2021046)
详细信息
    作者简介: 陈奇(2000—),男,硕士研究生,研究方向为河口海岸动力沉积地貌,E-mail:51213904001@stu.ecnu.edu.cn
    通讯作者: 贾建军(1973—),男,研究员,主要从事海岸带地貌动力过程与空间资源研究,E-mail:jjjia@sklec.ecnu.edu.cn
  • 中图分类号: P737.1

Application of low-altitude airspace UAVs in beach terrain monitoring

More Information
  • 消费级无人机的普及使得海滩监测有新的选择,但不同无人机平台的监测精度与适用情景各异,有必要进行适用性评价。本研究利用两种无人机平台(精灵4 RTK、经纬M300 RTK)与两种地形监测技术(SFM摄影测量、激光雷达)在象山县大沙海滩进行海滩地形监测,计算低空无人机监测海滩地形的平面误差与高程误差,分析不同无人机平台准同步监测结果之间的差异及其原因;利用无人机监测结果分析大沙海滩的地形特征,讨论海滩地形冬季前后变化。分析结果显示,无人机平台能胜任高精度的海滩地形变化监测工作。

  • 加载中
  • 图 1  大沙沙滩的地理区位及监测范围

    Figure 1. 

    图 2  大沙沙滩SFM摄影测量航迹线及质量控制点位分布状况

    Figure 2. 

    图 3  各测次验证点准确性与误差

    Figure 3. 

    图 4  沙滩高程准同步监测结果及其对比

    Figure 4. 

    图 5  准同步监测剖面对比

    Figure 5. 

    图 6  同平台、同参数的两期海滩地形监测结果及对比

    Figure 6. 

    图 7  测次A、B所得海滩剖面形态及侵淤变化

    Figure 7. 

    图 8  不同监测数据验证点高程误差

    Figure 8. 

    图 9  准同步监测差值分布直方图

    Figure 9. 

    表 1  无人机平台硬件参数

    Table 1.  Hardware parameters of two drone platforms used in this study

    硬件参数 精灵4 RTK 经纬M300 RTK
    硬件成本/(万元/台) 3.5 15.0
    负载模块 测绘相机 测绘相机;激光雷达
    测绘相机像素 有效像素2000万 有效像素2000万
    激光雷达精度/m 平面精度0.1;高程精度0.05
    飞行器定位精度 垂直精度1.5 cm
    水平精度1 cm
    垂直精度1.5 cm
    水平精度1 cm
    最大水平飞行速度/(m/s) 14 17
    最大信号范围/km 7 15
    单组电池飞行时间/min 30 55
    注:① 为生产商提供的技术参数,禅思L1的激光雷达系统在飞行高度为50 m的情况下平面精度为0.1 m,高程精度为0.05 m。② 表中所列定位精度为RTK启用且有固定解时的初始精度,此外,飞行器与起飞点的距离每增加1 km,误差也会增加1 mm。
    下载: 导出CSV

    表 2  不同测次的无人机平台及摄影技术参数

    Table 2.  Two drone platforms and photogrammetric parameters for different surveys

    测次
    编号
    测次日期 无人机平台 监测技术 飞行高
    度/m
    潮相
    及潮位
    航向重
    叠/%
    旁向重
    叠/%
    覆盖面
    积/km2
    GSD
    (cm/pixel)
    照片数
    量/张
    飞行历
    时/min
    A 2022-12-23 精灵4 RTK SFM摄影测量
    (井字飞行)
    60 大潮
    低潮位
    80 80 0.352 2.30 1921 82
    B 2023-04-07 精灵4 RTK SFM摄影测量
    (井字飞行)
    60 大潮
    低潮位
    80 80 0.370 2.38 1918 81
    C 2023-04-09 精灵4 RTK SFM摄影测量
    (2D)
    30 中潮
    低潮位
    80 70 0.044 1.13 371 16
    D 2023-04-09 经纬M300 RTK SFM摄影测量
    (2D)
    30 中潮
    低潮位
    70 70 0.045 1.01 487 20
    E 2023-04-09 经纬M300 RTK 单回波激光雷达
    (LiDAR)
    30 中潮
    低潮位
    70 70 0.045 20
    注:① “井字飞行模式”的飞行姿态为倾斜摄影,航迹线有垂直于岸线及平行于岸线的两组,似“井”字(图2a图2b);“SFM摄影测量(2D)模式”飞行时所得数据为正射影像,仅有单方向航线(图2cd);“单回波激光雷达”对一个目标点位仅打出一个激光点、且最多接收1个回波。
    ② 地面采样间隔(GSD,Ground Sampling Distance),单位为cm/pixel,其数值大小与相对地面的飞行高度有关,表内GSD数据为监测区域内地面采样间隔平均值;③ 激光雷达测量所得数据类型为数字点云,无影像数据。
    下载: 导出CSV

    表 3  像控点、检查点和验证点的数量

    Table 3.  The quantity of image control points, check points, and validation points

    测次编号地面像控点数量/个检查点数量/个验证点数量/个
    A6133
    B7140
    C6560
    D7460
    下载: 导出CSV

    表 4  SFM摄影测量像控点误差

    Table 4.  The positioning error of image control points in SFM photogrammetry

    cm 
    测次编号 x y p z d
    A 0.65 0.98 1.16 3.40 3.59
    B 2.20 2.17 3.09 2.23 3.81
    C 1.04 0.90 1.38 1.36 1.94
    D 1.42 0.72 1.59 1.54 2.21
    下载: 导出CSV

    表 5  准同步监测不同测次数据离散程度

    Table 5.  The data dispersion level of measurement in different surveys in quasi-synchronous monitoring

    测次编号协方差cov/m²
    测次C (P4-SFM)1.923
    测次D (M300-SFM)1.905
    测次E (M300-LiDAR)1.902
    下载: 导出CSV

    表 6  低空数字航摄与数据处理规范规定的点位误差

    Table 6.  The positioning errors specified in China’s national standard for low-altitude digital aerial photography and data processing

    点位类型成图比例尺平面误差/cm高程误差/cm
    平地丘陵地山地高山地平地丘陵地山地高山地
    像控点1∶5001515202011212640
    1∶10003030404021264075
    1∶20006060808021266090
    检查点与验证点1∶5002525353519354060
    1∶100050507070354060120
    1∶20001001001401403540100150
    下载: 导出CSV
  • [1]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 18190-2017 海洋学术语 海洋地质学[S]. 北京: 中国标准出版社, 2017

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 18190-2017 Oceanological Terminology—Marine Geology[S]. Beijing: Standards Press of China, 2017.

    [2]

    Chen B Q, Yang Y M, Wen H T, et al. High-resolution monitoring of beach topography and its change using unmanned aerial vehicle imagery[J]. Ocean & Coastal Management, 2018, 160:103-116.

    [3]

    蔡锋, 苏贤泽, 刘建辉, 等. 全球气候变化背景下我国海岸侵蚀问题及防范对策[J]. 自然科学进展, 2008, 18(10):1093-1103 doi: 10.3321/j.issn:1002-008X.2008.10.002

    CAI Feng, SU Xianze, LIU Jianhui, et al. The countermeasures of coastal erosion based on the global climate change[J]. Progress in Natural Science, 2008, 18(10):1093-1103. doi: 10.3321/j.issn:1002-008X.2008.10.002

    [4]

    Luijendijk A, Hagenaars G, Ranasinghe R, et al. The state of the world's beaches[J]. Scientific Reports, 2018, 8(1):6641. doi: 10.1038/s41598-018-24630-6

    [5]

    Vousdoukas M I, Ranasinghe R, Mentaschi L, et al. Sandy coastlines under threat of erosion[J]. Nature Climate Change, 2020, 10(3):260-263. doi: 10.1038/s41558-020-0697-0

    [6]

    李兵, 蔡锋, 曹立华, 等. 福建砂质海岸侵蚀原因和防护对策研究[J]. 台湾海峡, 2009, 28(2):156-162

    LI Bing, CAI Feng, CAO Lihua, et al. Causes of beach erosion in Fujian and preventions[J]. Journal of Oceanography in Taiwan Strait, 2009, 28(2):156-162.

    [7]

    王广禄, 蔡锋, 苏贤泽, 等. 泉州市砂质海岸侵蚀特征及原因分析[J]. 台湾海峡, 2008, 27(4):547-554

    WANG Guanglu, CAI Feng, SU Xianze, et al. Characters of sand beach erosion in Quanzhou and it causes[J]. Journal of Oceanography in Taiwan Strait, 2008, 27(4):547-554.

    [8]

    罗时龙, 蔡锋, 王厚杰. 海岸侵蚀及其管理研究的若干进展[J]. 地球科学进展, 2013, 28(11):1239-1247

    LOU Shilong, CAI Feng, WANG Houjie. Development of coastal erosion and management[J]. Advances in Earth Science, 2013, 28(11):1239-1247.

    [9]

    王颖, 吴小根. 海平面上升与海滩侵蚀[J]. 地理学报, 1995, 50(2):118-127 doi: 10.3321/j.issn:0375-5444.1995.02.003

    WANG Ying, WU Xiaogen. Sea level rise and beach response[J]. Acta Geographica Sinica, 1995, 50(2):118-127. doi: 10.3321/j.issn:0375-5444.1995.02.003

    [10]

    Muzirafuti A, Randazzo G, Lanza S. UAV application for coastal area monitoring: a case study of Sant’Alessio Siculo, Sicily[C]//Proceedings of 2022 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea). Milazzo: IEEE, 2022: 143-147.

    [11]

    Baily B, Nowell D. Techniques for monitoring coastal change: a review and case study[J]. Ocean & Coastal Management, 1996, 32(2):85-95.

    [12]

    Westoby M J, Lim M, Hogg M, et al. Cost-effective erosion monitoring of coastal cliffs[J]. Coastal Engineering, 2018, 138:152-164. doi: 10.1016/j.coastaleng.2018.04.008

    [13]

    Turner I L, Harley M D, Short A D, et al. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia[J]. Scientific Data, 2016, 3(1):160024. doi: 10.1038/sdata.2016.24

    [14]

    Feagin R A, Williams A M, Popescu S, et al. The use of terrestrial laser scanning (TLS) in dune ecosystems: the lessons learned[J]. Journal of Coastal Research, 2014, 30(1):111-119.

    [15]

    Brooks S M, Spencer T. Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK[J]. Geomorphology, 2010, 124(1-2):26-41. doi: 10.1016/j.geomorph.2010.08.005

    [16]

    Pardo-Pascual J E, Almonacid-Caballer J, Ruiz L A, et al. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision[J]. Remote Sensing of Environment, 2012, 123:1-11. doi: 10.1016/j.rse.2012.02.024

    [17]

    Pierre G. Processes and rate of retreat of the clay and sandstone sea cliffs of the northern Boulonnais (France)[J]. Geomorphology, 2006, 73(1-2):64-77. doi: 10.1016/j.geomorph.2005.07.002

    [18]

    Montreuil A L, Bullard J, Chandler J. Detecting seasonal variations in embryo dune morphology using a terrestrial laser scanner[J]. Journal of Coastal Research, 2013, 65(sp2):1313-1318.

    [19]

    Grohmann C H, Garcia G P B, Affonso A A, et al. Dune migration and volume change from airborne LiDAR, terrestrial LiDAR and Structure from Motion-Multi View Stereo[J]. Computers & Geosciences, 2020, 143:104569.

    [20]

    Troy C D, Cheng Y T, Lin Y C, et al. Rapid lake Michigan shoreline changes revealed by UAV LiDAR surveys[J]. Coastal Engineering, 2021, 170:104008. doi: 10.1016/j.coastaleng.2021.104008

    [21]

    毕海芸, 郑文俊, 曾江源, 等. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质, 2017, 39(4):656-674 doi: 10.3969/j.issn.0253-4967.2017.04.003

    BI Haiyun, ZHENG Wenjun, ZENG Jiangyuan, et al. Application of SfM photogrammetry method to the quantitative study of active tectonics[J]. Seismology and Geology, 2017, 39(4):656-674. doi: 10.3969/j.issn.0253-4967.2017.04.003

    [22]

    魏占玉, Ramon A, 何宏林, 等. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 2015, 37(2):636-648

    WEI Zhanyu, Ramon A, HE Honglin, et al. Accuracy analysis of terrain point cloud acquired by “structure from motion” using aerial photos[J]. Seismology and Geology, 2015, 37(2):636-648.

    [23]

    Pitman S J, Hart D E, Katurji M H. Application of UAV techniques to expand beach research possibilities: a case study of coarse clastic beach cusps[J]. Continental Shelf Research, 2019, 184:44-53. doi: 10.1016/j.csr.2019.07.008

    [24]

    郭一栋, 林杭杰, 于谦, 等. 基于无人机SfM摄影测量的海岸盐沼前缘形态变化研究[J]. 海洋学报, 2022, 44(12):148-160

    GUO Yidong, LIN Hangjie, YU Qian et al. Morphology of coastal salt marsh margins: a study using UAV-based Structure-from-Motion photogrammetry[J]. Haiyang Xuebao, 2022, 44(12):148-160.

    [25]

    Westoby M J, Brasington J, Glasser N F, et al. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179:300-314. doi: 10.1016/j.geomorph.2012.08.021

    [26]

    国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 35018-2018 民用无人驾驶航空器系统分类及分级[S]. 北京: 中国标准出版社, 2018

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 35018-2018 Classification and grading for civil unmanned aircraft system[S]. Beijing: Standards Press of China, 2018.

    [27]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 14950-2009 摄影测量与遥感术语[S]. 北京: 中国标准出版社, 2009

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 14950-2009 Terms of photogrammetry and remote sensing[S]. Beijing: Standards Press of China, 2009.

    [28]

    国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 39612-2020 低空数字航摄与数据处理规范[S]. 北京: 中国标准出版社, 2020

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 39612-2020 Specifications for low-altitude digital aerial photography and data processing[S]. Beijing: Standards Press of China, 2020.

    [29]

    中国民用航空局. 中国民用航空总局规章目录[EB/OL]. (2008-01-20)[2023-07-19]. http://www.caac.gov.cn/XXGK/XXGK/ZFGW/201601/t20160122_27768.html

    Civil Aviation Administration of China. Catalogue of regulations of the Civil Aviation Administration of China[EB/OL]. (2008-01-20)[2023-07-19]. http://www.caac.gov.cn/XXGK/XXGK/ZFGW/201601/t20160122_27768.html.

    [30]

    贝京阳, 陈杲, 俞晓天. 浙江省南田岛附近潮流特征分析[J]. 海洋湖沼通报, 2022, 44(5):60-66

    BEI Jingyang, CHEN Gao, YU Xiaotian. Characterization of tidal current near Nantian Island, Zhejiang province[J]. Transactions of Oceanology and Limnology, 2022, 44(5):60-66.

    [31]

    象山县地方志编纂委员会. 象山县志: 第一册[M]. 北京: 方志出版社, 2020: 405-407

    Xiangshan County Local Records Committee. Xiangshan County Annals: Volume 1[M]. Beijing: Local Records Publishing House, 2020: 405-407.

    [32]

    Laporte-Fauret Q, Marieu V, Castelle B, et al. Low-cost UAV for high-resolution and large-scale coastal dune change monitoring using photogrammetry[J]. Journal of Marine Science and Engineering, 2019, 7(3):63. doi: 10.3390/jmse7030063

    [33]

    Jaud M, Delacourt C, Le Dantec N, et al. Diachronic UAV photogrammetry of a sandy beach in Brittany (France) for a long-term coastal observatory[J]. ISPRS International Journal of Geo-Information, 2019, 8(6):267. doi: 10.3390/ijgi8060267

    [34]

    Mancini F, Dubbini M, Gattelli M, et al. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments[J]. Remote Sensing, 2013, 5(12):6880-6898. doi: 10.3390/rs5126880

    [35]

    Fonstad M A, Dietrich J T, Courville B C, et al. Topographic structure from motion: a new development in photogrammetric measurement[J]. Earth Surface Processes and Landforms, 2013, 38(4):421-430. doi: 10.1002/esp.3366

    [36]

    Jaud M, Grasso F, Le Dantec N, et al. Potential of UAVs for monitoring mudflat morphodynamics (application to the seine estuary, France)[J]. ISPRS International Journal of Geo-Information, 2016, 5(4):50. doi: 10.3390/ijgi5040050

  • 加载中

(9)

(6)

计量
  • 文章访问数:  593
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2023-07-30
修回日期:  2023-11-09
录用日期:  2023-11-09
刊出日期:  2023-12-28

目录