基于无人机SfM摄影测量的潮间带牡蛎礁地貌调查

庄佳铨, 罗科, 彭雲, 樊一阳, 林杭杰, 王韫玮, 于谦. 基于无人机SfM摄影测量的潮间带牡蛎礁地貌调查[J]. 海洋地质与第四纪地质, 2023, 43(6): 45-54. doi: 10.16562/j.cnki.0256-1492.2023080301
引用本文: 庄佳铨, 罗科, 彭雲, 樊一阳, 林杭杰, 王韫玮, 于谦. 基于无人机SfM摄影测量的潮间带牡蛎礁地貌调查[J]. 海洋地质与第四纪地质, 2023, 43(6): 45-54. doi: 10.16562/j.cnki.0256-1492.2023080301
ZHUANG Jiaquan, LUO Ke, PENG Yun, FAN Yiyang, LIN Hangjie, WANG Yunwei, YU Qian. Geomorphological survey of intertidal oyster reefs based on UAV Structure-from-Motion photogrammetry[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 45-54. doi: 10.16562/j.cnki.0256-1492.2023080301
Citation: ZHUANG Jiaquan, LUO Ke, PENG Yun, FAN Yiyang, LIN Hangjie, WANG Yunwei, YU Qian. Geomorphological survey of intertidal oyster reefs based on UAV Structure-from-Motion photogrammetry[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 45-54. doi: 10.16562/j.cnki.0256-1492.2023080301

基于无人机SfM摄影测量的潮间带牡蛎礁地貌调查

  • 基金项目: 国家自然科学基金“牡蛎礁多尺度沉积动力过程与地貌演化”(42076172);2021江苏省自然资源发展专项资金(海洋科技创新)项目(JSZRHYKJ202115)
详细信息
    作者简介: 庄佳铨(1996—),男,硕士研究生,自然地理学专业,E-mail:jiaquanz201503@gmail.com
    通讯作者: 于谦(1982—),男,博士,副教授,主要从事海洋沉积动力学研究,E-mail:qianyu.nju@gmail.com
  • 中图分类号: P737.1

Geomorphological survey of intertidal oyster reefs based on UAV Structure-from-Motion photogrammetry

More Information
  • 牡蛎礁是一种重要的海岸地貌系统,礁体的空间分布格局,深刻影响着周围的水动力和沉积动力过程,进而反作用于牡蛎礁自身演化。江苏海门蛎蚜山牡蛎礁为中国海岸重要且稀有的生态系统,近年来,沉积物覆盖和人为捕捞导致牡蛎礁退化严重。本文利用无人机对蛎蚜山牡蛎礁进行地貌观测,基于运动恢复结构(SfM,Structure from Motion)摄影测量技术重建出航拍区域的高分辨率三维模型,包括正射影像和数字高程模型(DEM),并对重建的模型进行目视解译和剖面分析。结果表明,位于航拍区域的牡蛎礁主要有三种形态:条带状、斑块状和环状。条带状牡蛎礁脊线整体上呈南北走向,可能由环状牡蛎礁退化或牡蛎的生物自组织过程形成。航拍区域的地貌面高差可达5 m以上,地势最高处高程为0.5 m(85高程,下同),最低处高程为−4.7 m。礁区内的礁体仍处于退化状态,其演化过程主要为:礁体表面出现坑洼→坑洼进一步扩张、延伸→形成溶槽→礁体分隔、分解,同时伴有沉积物对礁体的掩埋。本研究表明,无人机SfM技术可以高效获取牡蛎礁的地貌信息,为研究牡蛎礁演化过程提供了有力支持。

  • 加载中
  • 图 1  研究区位置

    Figure 1. 

    图 2  验证点分布情况及精度对比

    Figure 2. 

    图 3  无人机航拍区域对应的DEM(85高程)

    Figure 3. 

    图 4  不同演化阶段的牡蛎礁体

    Figure 4. 

    图 5  航拍区域内牡蛎礁的主要形态

    Figure 5. 

    图 6  跨越平行分布的条带状牡蛎礁的剖面结果(85高程)

    Figure 6. 

  • [1]

    Coen L D, Luckenbach M W. Developing success criteria and goals for evaluating oyster reef restoration: ecological function or resource exploitation?[J]. Ecological Engineering, 2000, 15(3-4):323-343. doi: 10.1016/S0925-8574(00)00084-7

    [2]

    Chambers L G, Gaspar S A, Pilato C J, et al. How well do restored intertidal oyster reefs support key biogeochemical properties in a coastal lagoon?[J]. Estuaries and Coasts, 2018, 41(3):784-799. doi: 10.1007/s12237-017-0311-5

    [3]

    Cressman K A, Posey M H, Mallin M A, et al. Effects of oyster reefs on water quality in a tidal creek estuary[J]. Journal of Shellfish Research, 2003, 22(3):753-762.

    [4]

    Piazza B P, Banks P D, La Peyre M K. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana[J]. Restoration Ecology, 2005, 13(3):499-506. doi: 10.1111/j.1526-100X.2005.00062.x

    [5]

    Scyphers S B, Powers S P, Heck Jr K L, et al. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries[J]. PLoS One, 2011, 6(8):e22396. doi: 10.1371/journal.pone.0022396

    [6]

    Quan W M, Zhu J X, Ni Y, et al. Faunal utilization of constructed intertidal oyster ( Crassostrea rivularis) reef in the Yangtze River estuary, China[J]. Ecological Engineering, 2009, 35(10):1466-1475. doi: 10.1016/j.ecoleng.2009.06.001

    [7]

    Beck M W, Brumbaugh R D, Airoldi L, et al. Oyster reefs at risk and recommendations for conservation, restoration, and management[J]. BioScience, 2011, 61(2):107-116. doi: 10.1525/bio.2011.61.2.5

    [8]

    Brumbaugh R D, Coen L D. Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: a review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864[J]. Journal of Shellfish Research, 2009, 28(1):147-161. doi: 10.2983/035.028.0105

    [9]

    Jackson J B C, Kirby M X, Berger W H, et al. Historical overfishing and the recent collapse of coastal ecosystems[J]. Science, 2001, 293(5530):629-637. doi: 10.1126/science.1059199

    [10]

    张忍顺. 江苏小庙洪牡蛎礁的地貌-沉积特征[J]. 海洋与湖沼, 2004, 35(1):1-7 doi: 10.3321/j.issn:0029-814X.2004.01.001

    ZHANG Renshun. The geomorphology-sedimentology character of oyster reef in Xiaomiaohong tidal channel, Jiangsu province[J]. Oceanologia et Limnologia Sinica, 2004, 35(1):1-7. doi: 10.3321/j.issn:0029-814X.2004.01.001

    [11]

    张忍顺, 王艳红, 张正龙, 等. 江苏小庙洪牡蛎礁的地貌特征及演化[J]. 海洋与湖沼, 2007, 38(3):259-265 doi: 10.3321/j.issn:0029-814X.2007.03.012

    ZHANG Renshun, WANG Yanhong, ZHANG Zhenglong, et al. Geomorphology and evolution of the Xiaomiaohong oyster reef off Jiangsu coast, China[J]. Oceanologia et Limnologia Sinica, 2007, 38(3):259-265. doi: 10.3321/j.issn:0029-814X.2007.03.012

    [12]

    Colden A M, Fall K A, Cartwright G M, et al. Sediment suspension and deposition across restored oyster reefs of varying orientation to flow: implications for restoration[J]. Estuaries and Coasts, 2016, 39(5):1435-1448. doi: 10.1007/s12237-016-0096-y

    [13]

    Grave C. Investigations for the Promotion of the Oyster Industry of North Carolina[M]. Washington: US Government Printing Office, 1904.

    [14]

    Kennedy V S, Sanford L P. The morphology and physical oceanography of unexploited oyster reefs in North America[M]//Luckenbach M W, Mann R, Wesson J A. Oyster Reef Habitat Restoration: A Synopsis and Synthesis of Approaches. Gloucester Point: VIMS Press, 1999: 25-46.

    [15]

    Smith G F, Roach E B, Bruce D G. The location, composition, and origin of oyster bars in mesohaline Chesapeake Bay[J]. Estuarine, Coastal and Shelf Science, 2003, 56(2):391-409. doi: 10.1016/S0272-7714(02)00191-9

    [16]

    Walles B, Salvador de Paiva J, van Prooijen B C, et al. The ecosystem engineer Crassostrea gigas affects tidal flat morphology beyond the boundary of their reef structures[J]. Estuaries and Coasts, 2015, 38(3):941-950. doi: 10.1007/s12237-014-9860-z

    [17]

    Woods H, HARGIS W J, Hershner C H, et al. Disappearance of the natural emergent 3-dimensional oyster reef system of the James River, Virginia, 1871-1948[J]. Journal of Shellfish Research, 2005, 24(1):139-142. doi: 10.2983/0730-8000(2005)24[139:DOTNED]2.0.CO;2

    [18]

    Lenihan H S. Physical–biological coupling on oyster reefs: how habitat structure influences individual performance[J]. Ecological Monographs, 1999, 69(3):251-275.

    [19]

    Koppel J, Rietkerk M, Dankers N, et al. Scale-dependent feedback and regular spatial patterns in young mussel beds[J]. The American Naturalist, 2005, 165(3):E66-E77. doi: 10.1086/428362

    [20]

    van de Koppel J, Bouma T J, Herman P M J. The influence of local-and landscape-scale processes on spatial self-organization in estuarine ecosystems[J]. Journal of Experimental Biology, 2012, 215(6):962-967. doi: 10.1242/jeb.060467

    [21]

    Ysebaert T, Walles B, Haner J, et al. Habitat modification and coastal protection by ecosystem-engineering reef-building bivalves[M]//Smaal A C, Ferreira J G, Grant J, et al. Goods and Services of Marine Bivalves. Cham: Springer, 2019: 253-273.

    [22]

    Grabowski J H, Brumbaugh R D, Conrad R F, et al. Economic valuation of ecosystem services provided by oyster reefs[J]. Bioscience, 2012, 62(10):900-909. doi: 10.1525/bio.2012.62.10.10

    [23]

    Zu Ermgassen P S E, Spalding M D, Grizzle R E, et al. Quantifying the loss of a marine ecosystem service: filtration by the eastern oyster in US estuaries[J]. Estuaries and Coasts, 2013, 36(1):36-43. doi: 10.1007/s12237-012-9559-y

    [24]

    Baggett L P, Powers S P, Brumbaugh R D, et al. Guidelines for evaluating performance of oyster habitat restoration[J]. Restoration Ecology, 2015, 23(6):737-745. doi: 10.1111/rec.12262

    [25]

    Barillé L, Prou J, Héral M, et al. Effects of high natural seston concentrations on the feeding, selection, and absorption of the oyster Crassostrea gigas (Thunberg)[J]. Journal of Experimental Marine Biology and Ecology, 1997, 212(2):149-172. doi: 10.1016/S0022-0981(96)02756-6

    [26]

    Gernez P, Barillé L, Lerouxel A, et al. Remote sensing of suspended particulate matter in turbid oyster‐farming ecosystems[J]. Journal of Geophysical Research:Oceans, 2014, 119(10):7277-7294. doi: 10.1002/2014JC010055

    [27]

    Huang W R, Hagen S C, Wang D B, et al. Suspended sediment projections in Apalachicola Bay in response to altered river flow and sediment loads under climate change and sea level rise[J]. Earth's Future, 2016, 4(10):428-439. doi: 10.1002/2016EF000384

    [28]

    Windle A E, Poulin S K, Johnston D W, et al. Rapid and accurate monitoring of intertidal Oyster Reef Habitat using unoccupied aircraft systems and structure from motion[J]. Remote Sensing, 2019, 11(20):2394. doi: 10.3390/rs11202394

    [29]

    Baggett L P, Powers S P, Brumbaugh R, et al. Oyster Habitat Restoration Monitoring and Assessment Handbook[M]. Arlington: The Nature Conservancy, 2014.

    [30]

    Power A, Corley B, Atkinson D, et al. A caution against interpreting and quantifying oyster habitat loss from historical surveys[J]. Journal of Shellfish Research, 2010, 29(4):927-936. doi: 10.2983/035.029.0425

    [31]

    Schill S R, Porter D E, Coen L D, et al. Development of an automated mapping technique for monitoring and managing shellfish distributions. A final report submitted to: NOAA/UNH cooperative institute for coastal and estuarine environmental technology (CICEET)[R]. Port Norris, 2006: 91.

    [32]

    Rodriguez A B, Fodrie F J, Ridge J T, et al. Oyster reefs can outpace sea-level rise[J]. Nature Climate Change, 2014, 4(6):493-497. doi: 10.1038/nclimate2216

    [33]

    Mancini F, Dubbini M, Gattelli M, et al. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments[J]. Remote Sensing, 2013, 5(12):6880-6898. doi: 10.3390/rs5126880

    [34]

    全为民, 周为峰, 马春艳, 等. 江苏海门蛎岈山牡蛎礁生态现状评价[J]. 生态学报, 2016, 36(23):7749-7757

    QUAN Weimin, ZHOU Weifeng, MA Chunyan, et al. Ecological status of a natural intertidal oyster reef in Haimen County, Jiangsu province[J]. Acta Ecologica Sinica, 2016, 36(23):7749-7757.

    [35]

    Lin H J, Yu Q, Wang Y W, et al. Identification, extraction and interpretation of Multi-Period variations of coastal suspended sediment concentration based on unevenly spaced observations[J]. Marine Geology, 2022, 445:106732. doi: 10.1016/j.margeo.2022.106732

    [36]

    Lin H J, Yu Q, Du Z Y, et al. Geomorphology and sediment dynamics of the Liyashan oyster reefs, Jiangsu Coast, China[J]. Acta Oceanologica Sinica, 2021, 40(10):118-128. doi: 10.1007/s13131-021-1866-3

    [37]

    全为民, 安传光, 马春艳, 等. 江苏小庙洪牡蛎礁大型底栖动物多样性及群落结构[J]. 海洋与湖沼, 2012, 43(5):992-1000 doi: 10.11693/hyhz201205017017

    QUAN Weimin, AN Chuanguang, MA Chunyan, et al. Biodiversity and community structure of benthic macroinvertebrates on the Xiaomiaohong oyster reef in Jiangsu province, China[J]. Oceanologia et Limnologia Sinica, 2012, 43(5):992-1000. doi: 10.11693/hyhz201205017017

    [38]

    任美锷, 丁方叔, 万延森, 等. 江苏省海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1986

    REN Mei’e, DING Fangshu, WANG Yansen, et al. Comprehensive Survey of Coastal Zone and Intertidal Resources in Jiangsu Province: Report[M]. Beijing: China Ocean Press, 1986.

    [39]

    Mian O, Lutes J, Lipa G, et al. Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Toronto, 2015: 397-402.

    [40]

    Brunier G, Michaud E, Fleury J, et al. Assessing the relationship between macro-faunal burrowing activity and mudflat geomorphology from UAV-based Structure-from-Motion photogrammetry[J]. Remote Sensing of Environment, 2020, 241:111717. doi: 10.1016/j.rse.2020.111717

    [41]

    Taddia Y, Pellegrinelli A, Corbau C, et al. High-resolution monitoring of tidal systems using UAV: a case study on Poplar Island, MD (USA)[J]. Remote Sensing, 2021, 13(7):1364. doi: 10.3390/rs13071364

    [42]

    Jaud M, Grasso F, Le Dantec N, et al. Potential of UAVs for monitoring mudflat morphodynamics (Application to the seine estuary, France)[J]. ISPRS International Journal of Geo-Information, 2016, 5(4):50. doi: 10.3390/ijgi5040050

    [43]

    Sanz-Ablanedo E, Chandler J H, Rodríguez-Pérez J R, et al. Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used[J]. Remote Sensing, 2018, 10(10):1606. doi: 10.3390/rs10101606

    [44]

    Ridge J T, Gray P C, Windle A E, et al. Deep learning for coastal resource conservation: automating detection of shellfish reefs[J]. Remote Sensing in Ecology and Conservation, 2020, 6(4):431-440. doi: 10.1002/rse2.134

    [45]

    Morris R L, La Peyre M K, Webb B M, et al. Large‐scale variation in wave attenuation of oyster reef living shorelines and the influence of inundation duration[J]. Ecological Applications, 2021, 31(6):e02382. doi: 10.1002/eap.2382

  • 加载中

(6)

计量
  • 文章访问数:  607
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2023-08-03
修回日期:  2023-11-04
录用日期:  2023-11-04
刊出日期:  2023-12-28

目录