70万年以来西太平洋暖池区硅质生产力记录及其气候效应

唐正, 熊志方, 贾奇, 秦秉斌, 李铁刚. 70万年以来西太平洋暖池区硅质生产力记录及其气候效应[J]. 海洋地质与第四纪地质, 2023, 43(4): 30-37. doi: 10.16562/j.cnki.0256-1492.2023080101
引用本文: 唐正, 熊志方, 贾奇, 秦秉斌, 李铁刚. 70万年以来西太平洋暖池区硅质生产力记录及其气候效应[J]. 海洋地质与第四纪地质, 2023, 43(4): 30-37. doi: 10.16562/j.cnki.0256-1492.2023080101
TANG Zheng, XIONG Zhifang, JIA Qi, QIN Bingbin, LI Tiegang. Silicic productivity record in the Westen Pacific Warm Pool in the last 700 ka and its climatic effect[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 30-37. doi: 10.16562/j.cnki.0256-1492.2023080101
Citation: TANG Zheng, XIONG Zhifang, JIA Qi, QIN Bingbin, LI Tiegang. Silicic productivity record in the Westen Pacific Warm Pool in the last 700 ka and its climatic effect[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 30-37. doi: 10.16562/j.cnki.0256-1492.2023080101

70万年以来西太平洋暖池区硅质生产力记录及其气候效应

  • 基金项目: 国家自然科学基金“晚中新世以来印度洋-太平洋暖池水体交换过程及其气候效应”(41830539),“中布容事件期间的南大洋深层通风状况研究”(41976080);全球变化与海气相互作用专项课题“古气候演变评估及影响分析”(GASI-04-QYQH-04);泰山学者工程专项“泰山学者特聘专家计划”(ts20190963)
详细信息
    作者简介: 唐正 (1981—),男,副研究员,主要从事古海洋学研究,E-mail:tangzheng@fio.org.cn
    通讯作者: 李铁刚(1965—),男,研究员,主要从事古海洋学研究,E-mail:tgli@fio.org.cn
  • 中图分类号: P736

Silicic productivity record in the Westen Pacific Warm Pool in the last 700 ka and its climatic effect

More Information
  • 西太平洋暖池(WPWP)的硅质生产力水平在调节第四纪全球大气CO2分压的变化上发挥着重要作用,但其控制因素尚存争议。本研究对位于WPWP核心区的MD06-3047岩芯进行了生源蛋白石分析,探讨了700 ka以来WPWP的硅质生产力的控制因素及气候效应。研究发现,700 ka以来WPWP硅质生产力变化呈现显著的冰期-间冰期旋回,基本在冰期较高,间冰期较低。其主要控制因素可能是东吕宋陆架沉积物风化输入、亚洲风尘输入和温跃层深度(DOT)变化。南大洋中层水的“硅溢漏”可能无法对此海区产生显著影响。冰期时的低海平面,导致热带火山弧附近裸露的陆架沉积物的物理剥蚀和硅酸盐风化,淡水输入为WPWP提供了更多的硅酸;冰期时增强的风尘供应为WPWP提供了更多的Fe;冰期时较浅的DOT使表层海水的营养物质垂向空间变小,滞留时间增多。这些因素使冰期的WPWP生产力增高,有可能降低了大气CO2分压。

  • 加载中
  • 图 1  MD06-3047岩芯站位信息图

    Figure 1. 

    图 2  MD06-3047岩芯生源蛋白石含量特征

    Figure 2. 

    图 3  MD06-3047岩芯生源蛋白石含量与潜在控制因素比对

    Figure 3. 

    图 4  MD06-3047岩芯相关参数与全球气候指标比对

    Figure 4. 

  • [1]

    Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present[J]. Nature, 2008, 453(7193): 379-382. doi: 10.1038/nature06949

    [2]

    Xiong Z F, Li T G, Crosta X, et al. Potential role of giant marine diatoms in sequestration of atmospheric CO2 during the last glacial maximum: δ13C evidence from laminated Ethmodiscus rex mats in tropical west pacific[J]. Global and Planetary Change, 2013, 108: 1-14. doi: 10.1016/j.gloplacha.2013.06.003

    [3]

    Tang Z, Li T G, Chang F M, et al. Paleoproductivity evolution in the west Philippine sea during the last 700 ka[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(2): 435-444. doi: 10.1007/s00343-013-2117-z

    [4]

    Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the Tropical West Pacific[J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044

    [5]

    Xu Z K, Wan S M, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the western pacific warm pool during the quaternary sea-level lowstands: Forcing mechanisms and implications for the global carbon cycle[J]. Quaternary Science Reviews, 2020, 232: 106211. doi: 10.1016/j.quascirev.2020.106211

    [6]

    Sarmiento J L, Gruber N, Brzezinski M A, et al. High-latitude controls of thermocline nutrients and low latitude biological productivity[J]. Nature, 2004, 427(6969): 56-60. doi: 10.1038/nature02127

    [7]

    Bostock H C, Opdyke B N, Williams M J M. Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(7): 847-859. doi: 10.1016/j.dsr.2010.04.005

    [8]

    Ragueneau O, Tréguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change, 2000, 26(4): 317-365. doi: 10.1016/S0921-8181(00)00052-7

    [9]

    Pondaven P, Ragueneau O, Tréguer P, et al. Resolving the ‘opal paradox’ in the Southern Ocean[J]. Nature, 2000, 405(6783): 168-172. doi: 10.1038/35012046

    [10]

    Nelson D M, Anderson R F, Barber R T, et al. Vertical budgets for organic carbon and biogenic silica in the pacific sector of the Southern Ocean, 1996–1998[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9-10): 1645-1674. doi: 10.1016/S0967-0645(02)00005-X

    [11]

    Boyd P W, Watson A J, Law C S, et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature, 2000, 407(6805): 695-702. doi: 10.1038/35037500

    [12]

    Qiu B, Lukas R. Seasonal and interannual variability of the north equatorial current, the Mindanao current, and the Kuroshio along the pacific western boundary[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12315-12330. doi: 10.1029/95JC03204

    [13]

    Qu T D, Lukas R. The bifurcation of the north equatorial current in the pacific[J]. Journal of Physical Oceanography, 2003, 33(1): 5-18. doi: 10.1175/1520-0485(2003)033<0005:TBOTNE>2.0.CO;2

    [14]

    Kim J H, Rimbu N, Lorenz S J, et al. North pacific and north Atlantic sea-surface temperature variability during the Holocene[J]. Quaternary Science Reviews, 2004, 23(20-22): 2141-2154. doi: 10.1016/j.quascirev.2004.08.010

    [15]

    Dugdale R C, Wischmeyer A G, Wilkerson F P, et al. Meridional asymmetry of source nutrients to the equatorial pacific upwelling ecosystem and its potential impact on ocean–atmosphere CO2 flux; a data and modeling approach[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(13-14): 2513-2531. doi: 10.1016/S0967-0645(02)00046-2

    [16]

    Locarnini R A, Mishonov A V, Antonov J I, et al. World ocean atlas 2005, vol. 1, temperature[M]//Levitus S. NOAA Atlas NESDIS, vol. 61. Washington: U. S. Government Printing Office, 2006.

    [17]

    Sigman D M, Hain M P. The biological productivity of the ocean[J]. Nature Education Knowledge, 2012, 3(10): 21.

    [18]

    Xiong Z F, Li T G, Algeo T, et al. The silicon isotope composition of Ethmodiscus rex laminated diatom mats from the tropical west pacific: Implications for silicate cycling during the last glacial maximum[J]. Paleoceanography, 2015, 30(7): 803-823. doi: 10.1002/2015PA002793

    [19]

    Liu Z F, Zhao Y L, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025

    [20]

    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7

    [21]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003.

    [22]

    Thompson P R, Bé A W H, Duplessy J C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120, 000 yr BP in the Indian and pacific oceans[J]. Nature, 1979, 280(5723): 554-558. doi: 10.1038/280554a0

    [23]

    Xu Z K, Li T G, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the Mid‐Late Quaternary and its potential significance for paleoenvironment[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3182-3196. doi: 10.1002/2015GC005929

    [24]

    Wan S M, Clift P D, Zhao D B, et al. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2[J]. Geochimica et Cosmochimica Acta, 2017, 200: 123-144. doi: 10.1016/j.gca.2016.12.010

    [25]

    Xu Z K, Li T G, Clift P D, et al. Bathyal records of enhanced silicate erosion and weathering on the exposed Luzon shelf during glacial lowstands and their significance for atmospheric CO2 sink[J]. Chemical Geology, 2018, 476: 302-315. doi: 10.1016/j.chemgeo.2017.11.027

    [26]

    Beaufort L, De Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the Late Pleistocene[J]. Science, 2001, 293(5539): 2440-2444. doi: 10.1126/science.293.5539.2440

    [27]

    Sun H J, Li T G, Liu C L, et al. Variations in the western pacific warm pool across the Mid-Pleistocene: Evidence from oxygen isotopes and coccoliths in the West Philippine sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 157-171. doi: 10.1016/j.palaeo.2017.07.008

    [28]

    Brzezinski M A, Pride C J, Franck V M, et al. A switch from Si(OH)4 to NO3 depletion in the glacial Southern Ocean[J]. Geophysical Research Letters, 2002, 29(12): 5-1-5-4.

    [29]

    Tang Z, Shi X F, Zhang X, et al. Deglacial biogenic opal peaks revealing enhanced Southern Ocean upwelling during the last 513 ka[J]. Quaternary International, 2016, 425: 445-452. doi: 10.1016/j.quaint.2016.09.020

    [30]

    Bazin L, Landais A, Lemieux-Dudon B, et al. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka[J]. Climate of the Past, 2013, 9(4): 1715-1731. doi: 10.5194/cp-9-1715-2013

    [31]

    Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past Discussions, 2015, 11: 3699-3728.

    [32]

    Xiong Z F, Li T G, Chang F M, et al. Rapid precipitation changes in the tropical West Pacific linked to North Atlantic climate forcing during the last deglaciation[J]. Quaternary Science Reviews, 2018, 197: 288-306. doi: 10.1016/j.quascirev.2018.07.040

    [33]

    Chen L Y, Luo M, Dale A W, et al. Reconstructing organic matter sources and rain rates in the southern West Pacific Warm Pool during the transition from the deglaciation period to early Holocene[J]. Chemical Geology, 2019, 529: 119291. doi: 10.1016/j.chemgeo.2019.119291

  • 加载中

(4)

计量
  • 文章访问数:  768
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2023-08-01
修回日期:  2023-08-17
录用日期:  2023-08-17
刊出日期:  2023-08-28

目录