闽江河口潮滩季节性冲淤变化格局及其控制机制

王爱军, 李海琪, 叶翔, 梁灏深, 张望泽, 吴水兰, 冉畅, 陶舒琴, 刘子同, 于谦. 闽江河口潮滩季节性冲淤变化格局及其控制机制[J]. 海洋地质与第四纪地质, 2023, 43(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2023091101
引用本文: 王爱军, 李海琪, 叶翔, 梁灏深, 张望泽, 吴水兰, 冉畅, 陶舒琴, 刘子同, 于谦. 闽江河口潮滩季节性冲淤变化格局及其控制机制[J]. 海洋地质与第四纪地质, 2023, 43(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2023091101
WANG Aijun, LI Haiqi, YE Xiang, LIANG Haoshen, ZHANG Wangze, WU Shuilan, RAN Chang, TAO Shuqin, LIU Zitong, YU Qian. Patterns and controlling factors of seasonal erosion and accretion of estuarine tidal flat in the Minjiang River estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2023091101
Citation: WANG Aijun, LI Haiqi, YE Xiang, LIANG Haoshen, ZHANG Wangze, WU Shuilan, RAN Chang, TAO Shuqin, LIU Zitong, YU Qian. Patterns and controlling factors of seasonal erosion and accretion of estuarine tidal flat in the Minjiang River estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2023091101

闽江河口潮滩季节性冲淤变化格局及其控制机制

  • 基金项目: 国家自然科学基金项目“闽江河口-毗邻海岸的地貌沉积互馈过程及环境演变”(U22A20585),“中小型山溪性河口水下三角洲沉积体系演化及其对人类活动与极端事件的响应”(41776099);自然资源部第三海洋研究所科研业务费专项资金资助项目(海三科2019018、海三科2019017)
详细信息
    作者简介: 王爱军(1977—),男,博士,研究员,主要从事海洋沉积动力学研究,E-mail:wangaijun@tio.org.cn
  • 中图分类号: P736

Patterns and controlling factors of seasonal erosion and accretion of estuarine tidal flat in the Minjiang River estuary

  • 潮滩是潮汐作用下形成的细颗粒沉积物堆积体,在世界范围内分布广泛,在碳汇和海岸防护中发挥着十分重要的作用。随着河流输沙的减少,河口潮滩冲淤格局发生了变化,直接影响了潮滩功能发挥,亟需开展河口潮滩短周期的冲淤变化过程研究,为评估潮滩功能提供科学依据。根据在福建闽江口琅岐岛潮滩开展的不同季节沉积动力要素(水深、流速、波浪、悬沙浓度)和现场冲淤观测及表层沉积物的粒度分析结果,琅岐岛潮滩表层沉积物在夏季主要以粉砂和黏土组成的细颗粒沉积物为主,冬季则主要以砂和粉砂组成的粗颗粒沉积物为主;潮间带上部的互花米草盐沼总体以持续淤积为主,潮间带中部和下部表现出周期性的冲淤特征,总体以夏季淤积、冬季侵蚀为总特征,并且潮间带中部的冲淤变化幅度较潮间带下部大;冬季潮流流速、波浪作用及悬沙浓度均大于夏季,冬季潮周期内近底部悬沙以净向海输运为主,而夏季则以净向岸输运为主。综上所述,闽江口潮滩冲淤变化主要受动力过程控制,冬季波浪作用导致表层沉积物发生再悬浮,并被较强的潮流净向海输运,导致滩面发生侵蚀;夏季,波浪作用较弱,水体中的悬沙易发生沉降,较弱的潮流将泥沙净向岸输运,导致潮间带发生淤积。

  • 加载中
  • 图 1  研究区位置(a)、沉积物采样站位(b)、剖面形态及观测站位图(c)

    Figure 1. 

    图 2  悬沙浓度与ADV观测获得的信噪比的相关关系

    Figure 2. 

    图 3  琅岐岛潮滩夏季(左)和冬季(右)表层沉积物粒度组成

    Figure 3. 

    图 4  琅岐岛潮滩不同季节表层沉积物中值粒径

    Figure 4. 

    图 5  琅岐岛潮滩不同季节表层沉积物类型

    Figure 5. 

    图 6  潮间带不同站位冲淤变化过程

    Figure 6. 

    图 7  潮滩中上部光滩冬季近底部水动力时间序列变化过程

    Figure 7. 

    图 9  近底部瞬时悬沙水平输运率及潮周期内悬沙水平输运净通量

    Figure 9. 

    图 8  潮滩中上部光滩夏季近底部水动力时间序列变化过程

    Figure 8. 

    表 1  琅岐岛潮间带不同季节表层沉积物粒度组分及中值粒径

    Table 1.  Seasonal variations of composition and median grain-size of surficial sediment

    采样时间砂含量/%粉砂含量/%黏土含量/%中值粒径/Φ
    变化范围平均值变化范围平均值变化范围平均值变化范围平均值
    2022年8月0.2~39.910.343.6~70.363.616.4~32.926.15.03~7.236.52
    2023年2月14.6~95.760.84.0~73.332.80.2~14.46.42.57~5.243.79
    下载: 导出CSV
  • [1]

    Eisma D. Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons[M]. Boca Raton: CRC Press, 1998: 1-525.

    [2]

    Dyer K R, Christie M C, Wright E W. The classification of intertidal mudflats[J]. Continental Shelf Research, 2000, 20(10-11):1039-1060. doi: 10.1016/S0278-4343(00)00011-X

    [3]

    Fan D D. Open-coast tidal flats[M]//Davis R A Jr, Dalrymple R W. Principles of Tidal Sedimentology. New York: Springer, 2012: 187-229.

    [4]

    Gao S. Geomorphology and sedimentology of tidal flats[M]//Perillo G M E, Wolanski E, Cahoon D R, et al. Coastal Wetlands: An Ecosystem Integrated Approach. 2nd ed. Amsterdam: Elsevier, 2019: 359-381.

    [5]

    Murray N J, Phinn S R, DeWitt M, et al. The global distribution and trajectory of tidal flats[J]. Nature, 2019, 565(7738):222-225. doi: 10.1038/s41586-018-0805-8

    [6]

    王颖, 朱大奎. 中国的潮滩[J]. 第四纪研究, 1990, 10(4):291-300 doi: 10.3321/j.issn:1001-7410.1990.04.001

    WANG Ying, ZHU Dakui. Tidal flats of China[J]. Quaternary Sciences, 1990, 10(4):291-300. doi: 10.3321/j.issn:1001-7410.1990.04.001

    [7]

    王颖. 渤海湾西部贝壳堤与古海岸线问题[J]. 南京大学学报:自然科学版, 1964, 8(3):424-440

    WANG Ying. The shell coast ridges and the old coastlines of the west coast of the Bohai bay[J]. Journal of Nanjing University:Natural Sciences, 1964, 8(3):424-440.

    [8]

    Evans G. Intertidal flat sediments and their environments of deposition in the Wash[J]. Quarterly Journal of the Geological Society, 1965, 121:209-240. doi: 10.1144/gsjgs.121.1.0209

    [9]

    Stumpf R P. The process of sedimentation on the surface of a salt marsh[J]. Estuarine, Coastal and Shelf Science, 1983, 17(5):495-508. doi: 10.1016/0272-7714(83)90002-1

    [10]

    任美锷, 张忍顺, 杨巨海. 江苏王港地区淤泥质潮滩的沉积作用[J]. 海洋通报, 1984, 3(1):40-54

    REN Mei’e, ZHANG Renshun, YANG Juhai. Sedimentation on tidal mud flat in Wanggang Area, Jiangsu province, China[J]. Marine Science Bulletin, 1984, 3(1):40-54.

    [11]

    张忍顺. 江苏省淤泥质潮滩的潮流特征及悬移质沉积过程[J]. 海洋与湖沼, 1986, 17(3):235-245

    ZHANG Renshun. Characteristics of tidal current and sedimentation of suspended load on tidal mud flat in Jiangsu Province[J]. Oceanologia et Limnologia Sinica, 1986, 17(3):235-245.

    [12]

    Amos C L. Fine-grained sediment transport in Chignecto Bay, Bay of Fundy, Canada[J]. Continental Shelf Research, 1987, 7(11-12):1295-1300. doi: 10.1016/0278-4343(87)90032-X

    [13]

    高抒, 朱大奎. 江苏淤泥质海岸剖面的初步研究[J]. 南京大学学报:自然科学版, 1988, 24(1):75-84

    GAO Shu, ZHU Dakui. The profile of Jiangsu’s mud coast[J]. Journal of Nanjing University:Natural Sciences, 1988, 24(1):75-84.

    [14]

    Shi Z, Chen J Y. Morphodynamics and sediment dynamics on intertidal mudflats in China (1961-1994)[J]. Continental Shelf Research, 1996, 16(15):1909-1926. doi: 10.1016/0278-4343(95)00059-3

    [15]

    Yang S L. The role of Scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze estuary[J]. Estuarine, Coastal and Shelf Science, 1998, 47(2):227-233. doi: 10.1006/ecss.1998.0348

    [16]

    Allen J R L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12):1155-1231. doi: 10.1016/S0277-3791(99)00034-7

    [17]

    范代读, 李从先, 邓兵, 等. 潮汐周期在潮坪沉积中的记录[J]. 同济大学学报, 2002, 30(3):281-285

    FAN Daidu, LI Congxian, DENG Bing, et al. Tidal cycles recorded in tidal-flat deposits[J]. Journal of Tongji University, 2002, 30(3):281-285.

    [18]

    贾建军, 汪亚平, 高抒, 等. 江苏大丰潮滩推移质输运与粒度趋势信息解译[J]. 科学通报, 2005, 50(22): 2546-2554

    JIA Jianjun, WANG Yaping, GAO Shu, et al. Interpreting grain-size trends associated with bedload transport on the intertidal flats at Dafeng, central Jiangsu coast[J]. Chinese Science Bulletin, 2006, 51(3): 341-351.

    [19]

    高抒. 潮滩沉积记录正演模拟初探[J]. 第四纪研究, 2007, 27(5):750-755 doi: 10.3321/j.issn:1001-7410.2007.05.016

    GAO Shu. Determination of preservation potential in tidal flat sedimentary records: A forward modeling approach[J]. Quaternary Sciences, 2007, 27(5):750-755. doi: 10.3321/j.issn:1001-7410.2007.05.016

    [20]

    王爱军, 高抒, 贾建军. 互花米草对江苏潮滩沉积和地貌演化的影响[J]. 海洋学报, 2006, 28(1):92-99

    WANG Aijun, GAO Shu, JIA Jianjun. Impact of Spartina alterniflora on sedimentary and morphological evolution of tidal salt marshes of Jiangsu, China[J]. Acta Oceanologica Sinica, 2006, 28(1):92-99.

    [21]

    王爱军, 高抒, 陈坚, 等. 福建泉州湾盐沼对台风“格美”的沉积动力响应[J]. 科学通报, 2008, 53(22): 2814-2823

    WANG Aijun, GAO Shu, CHEN Jian, et al. Sediment dynamic responses of coastal salt marsh to typhoon “KAEMi” in Quanzhou Bay, Fujian Province, China[J]. Chinese Science Bulletin, 2009, 54(1): 120-130.

    [22]

    王爱军, 叶翔, 陈坚. 台风作用下的港湾型潮滩沉积过程: 以2008年“凤凰”台风对福建省罗源湾的影响为例[J]. 海洋学报, 2009, 31(6):77-86

    WANG Aijun, YE Xiang, CHEN Jian. Effects of typhoon on sedimentary processes of embayment tidal flat: A case study from the “Fenghuang” typhoon in 2008[J]. Acta Oceanologica Sinica, 2009, 31(6):77-86.

    [23]

    王爱军, 叶翔, 李云海. 台风期间港湾海岸湿地侵蚀、淤积的环境动力学机制初探: 以福建罗源湾为例[J]. 沉积学报, 2013, 31(2):315-324

    WANG Aijun, YE Xiang, LI Yunhai. Environmental dynamic mechanisms for sediment erosion and accretion over embayment coastal wetland during typhoon event: A case study from Luoyuan Bay, Fujian, China[J]. Acta Sedimentologica Sinica, 2013, 31(2):315-324.

    [24]

    Wang Y P, Gao S, Jia J J, et al. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China[J]. Marine Geology, 2012, 291-294:147-161. doi: 10.1016/j.margeo.2011.01.004

    [25]

    Fan D D, Wang Y, Liu M. Classifications, sedimentary features and facies associations of tidal flats[J]. Journal of Palaeogeography, 2013, 2(1):66-80.

    [26]

    Yu Q, Wang Y W, Shi B W, et al. Physical and sedimentary processes on the tidal flat of central Jiangsu Coast, China: Headland induced tidal eddies and benthic fluid mud layers[J]. Continental Shelf Research, 2017, 133:26-36. doi: 10.1016/j.csr.2016.12.015

    [27]

    Shi B W, Cooper J R, Pratolongo P D, et al. Erosion and accretion on a mudflat: The importance of very shallow-water effects[J]. Journal of Geophysical Research:Oceans, 2017, 122(12):9476-9499. doi: 10.1002/2016JC012316

    [28]

    Shi B W, Cooper J R, Li J S, et al. Hydrodynamics, erosion and accretion of intertidal mudflats in extremely shallow waters[J]. Journal of Hydrology, 2019, 573:31-39. doi: 10.1016/j.jhydrol.2019.03.065

    [29]

    龚政, 黄诗涵, 徐贝贝, 等. 江苏中部沿海潮滩对台风暴潮的响应[J]. 水科学进展, 2019, 30(2):243-254 doi: 10.14042/j.cnki.32.1309.2019.02.009

    GONG Zheng, HUANG Shihan, XU Beibei, et al. Evolution of tidal flat in response to storm surges: a case study from the central Jiangsu Coast[J]. Advances in Water Science, 2019, 30(2):243-254. doi: 10.14042/j.cnki.32.1309.2019.02.009

    [30]

    龚政, 陈欣迪, 周曾, 等. 生物作用对海岸带泥沙运动的影响[J]. 科学通报, 2021, 66(1):53-62 doi: 10.1360/TB-2020-0291

    GONG Zheng, CHEN Xindi, ZHOU Zeng, et al. The roles of biological factors in coastal sediment transport: A review[J]. Chinese Science Bulletin, 2021, 66(1):53-62. doi: 10.1360/TB-2020-0291

    [31]

    Zhou Z, Liu Q, Fan D D, et al. Simulating the role of tides and sediment characteristics on tidal flat sorting and bedding dynamics[J]. Earth Surface Processes and Landforms, 2021, 46(11):2163-2176. doi: 10.1002/esp.5166

    [32]

    Zhou Z, Wu Y M, Fan D D, et al. Sediment sorting and bedding dynamics of tidal flat wetlands: Modeling the signature of storms[J]. Journal of Hydrology, 2022, 610:127913. doi: 10.1016/j.jhydrol.2022.127913

    [33]

    Liu X Y, Xing F, Shi B W, et al. Erosion and accretion patterns on intertidal mudflats of the Yangtze River Estuary in response to storm conditions[J]. Anthropocene Coasts, 2023, 6:6. doi: 10.1007/s44218-023-00020-y

    [34]

    Chen J, Wang D Q, Li Y J, et al. The carbon stock and sequestration rate in tidal flats from coastal China[J]. Global Biogeochemical Cycles, 2020, 34(11):e2020GB006772. doi: 10.1029/2020GB006772

    [35]

    Chen Z L, Lee S Y. Tidal flats as a significant carbon reservoir in global coastal ecosystems[J]. Frontiers in Marine Science, 2022, 9:900896. doi: 10.3389/fmars.2022.900896

    [36]

    Schuerch M, Spencer T, Temmerman S, et al. Future response of global coastal wetlands to sea-level rise[J]. Nature, 2018, 561(7722):231-234. doi: 10.1038/s41586-018-0476-5

    [37]

    Li X Z, Bellerby R, Craft C, et al. Coastal wetland loss, consequences, and challenges for restoration[J]. Anthropocene Coasts, 2018, 1:1-15.

    [38]

    Walter R K, O’Leary J K, Vitousek S, et al. Large-scale erosion driven by intertidal eelgrass loss in an estuarine environment[J]. Estuarine, Coastal and Shelf Science, 2020, 243:106910. doi: 10.1016/j.ecss.2020.106910

    [39]

    Yang S L, Luo X X, Temmerman S, et al. Role of delta-front erosion in sustaining salt marshes under sea-level rise and fluvial sediment decline[J]. Limnology and Oceanography, 2020, 65(9):1990-2009. doi: 10.1002/lno.11432

    [40]

    汪亚平, 贾建军, 杨阳, 等. 长江三角洲蓝图重绘的基础科学问题: 进展与未来研究[J]. 海洋科学, 2019, 43(10):2-12

    WANG Yaping, JIA Jianjun, YANG Yang, et al. Fundamental scientific issues for the Changjiang River delta associated with the new blueprint of future development: overview and prospect[J]. Marine Sciences, 2019, 43(10):2-12.

    [41]

    中国海湾志编纂委员会. 中国海湾志(第十四分册: 重要河口)[M]. 北京: 海洋出版社, 1998: 626-691

    State Oceanic Administration. China Embayment (No. 14: Important River Estuaries)[M]. Beijing, Marine Press, 1998: 626-691.

    [42]

    Wang A J, Ye X, Lin Z K, et al. Response of sedimentation processes in the Minjiang River subaqueous delta to anthropogenic activities in the river basin[J]. Estuarine, Coastal and Shelf Science, 2020, 232:106484. doi: 10.1016/j.ecss.2019.106484

    [43]

    陈坚, 汤军健, 李东义. 闽江入海物质对闽江口及沿海地区的影响[M]. 北京: 科学出版社, 2015: 1-172

    CHEN Jian, TANG Junjian, LI Dongyi. Influence of Outflows from the Minjiang River on the Estuary and Adjacent Coastal Areas[M]. Beijing: Science Press, 2015: 1-172.

    [44]

    Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Petrology, 1954, 24(3):151-158.

    [45]

    Soulsby R. Dynamics of Marine Sands: A Manual for Practical Applications[M]. London: Thomas Telford, 1997: 1-249.

    [46]

    Longuet-Higgins M S. On the statistical distribution of the heights of sea waves[J]. Journal of Marine Research, 1952, 11(3):245-266.

    [47]

    Karimpour A, Chen Q. Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox[J]. Computers & Geosciences, 2017, 106:181-189.

    [48]

    Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. Chichester: John Wiley & Sons, 1986: 1-342.

    [49]

    Taki K. Critical shear stress for cohesive sediment transport[M]//McAnally W H, Mehta A J. Proceedings in Marine Science: Coastal and Estuarine Fine Sediment Processes. Amsterdam: Elsevier, 2000, 3: 53-61.

    [50]

    Roberts W, Le Hir P, Whitehouse R J S. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats[J]. Continental Shelf Research, 2000, 20(10-11):1079-1097. doi: 10.1016/S0278-4343(00)00013-3

    [51]

    Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352:268-294. doi: 10.1016/j.margeo.2014.03.021

    [52]

    杨世伦. 长江三角洲潮滩季节性冲淤循环的多因子分析[J]. 地理学报, 1997, 52(2):123-130 doi: 10.3321/j.issn:0375-5444.1997.02.006

    YANG Shilun. Multi-factor analysis of the annually cyclic erosion deposition of the Changjiang River Deltaic[J]. Acta Geographica Sinica, 1997, 52(2):123-130. doi: 10.3321/j.issn:0375-5444.1997.02.006

    [53]

    Yang S L, Li H, Ysebaert T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4):657-671. doi: 10.1016/j.ecss.2007.10.024

    [54]

    Folmer E O, Bijleveld A I, Holthuijsen S, et al. Space-time analyses of sediment composition reveals synchronized dynamics at all intertidal flats in the Dutch Wadden Sea[J]. Estuarine, Coastal and Shelf Science, 2023, 285:108308. doi: 10.1016/j.ecss.2023.108308

    [55]

    王爱军, 叶翔, 徐晓晖, 等. 亚热带中小型山溪性河流—宽陆架系统“源-汇”过程: 以闽江—东海陆架系统为例[J]. 沉积学报, 2022, 40(6):1615-1634

    WANG Aijun, YE Xiang, XU Xiaohui, et al. “Source-to-sink” processes of a subtropical mid-small mountainous river-wide continental shelf system: A case study from the Minjiang River-east China Sea system[J]. Acta Sedimentologica Sinica, 2022, 40(6):1615-1634.

    [56]

    李海琪, 王爱军, 叶翔, 等. 闽江口琅岐岛潮滩沉积物粒度时空变化特征研究[J]. 海洋地质与第四纪地质, 2023, 待刊

    LI Haiqi, WANG Aijun, YE Xiang, et al. Spatio-temporal variations of surficial sediment grain-size of tidal flat in Minjiang estuary[J]. Marine Geology & Quaternary Geology, 2023, in press.

    [57]

    Le Hir P, Roberts W, Cazaillet O, et al. Characterization of intertidal flat hydrodynamics[J]. Continental Shelf Research, 2000, 20(12-13):1433-1459. doi: 10.1016/S0278-4343(00)00031-5

    [58]

    Chen D Z, Tang J P, Xing F, et al. Erosion and accretion of salt marsh in extremely shallow water stages[J]. Frontiers in Marine Science, 2023, 10:1198536. doi: 10.3389/fmars.2023.1198536

    [59]

    Whitehouse R J S, Soulsby R L, Reborts W, et al. Dynamics of Estuarine Muds: A Manual for Practical Applications[M]. London: Thomas Telford, 2000: 1-210.

    [60]

    De Swart H E, Zimmerman J T F. Morphodynamics of tidal inlet systems[J]. Annual Review of Fluid Mechanics, 2009, 41:203-229. doi: 10.1146/annurev.fluid.010908.165159

    [61]

    杨洋, 陈沈良, 徐丛亮. 黄河口滨海区冲淤演变与潮流不对称[J]. 海洋学报, 2021, 43(6):13-25

    YANG Yang, CHEN Shenliang, XU Congliang. Morphodynamics and tidal flow asymmetry of the Huanghe River Estuary[J]. Haiyang Xuebao, 2021, 43(6):13-25.

    [62]

    赵建春, 李九发, 李占海, 等. 长江口南汇嘴潮滩短期冲淤演变及其动力机制研究[J]. 海洋学报, 2009, 31(4):103-111

    ZHAO Jianchun, LI Jiufa, LI Zhanhai, et al. Researches on characteristics and dynamic mechanism of short-term scouring and silting changes of the tidal flat on Nanhui Spit in the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2009, 31(4):103-111.

    [63]

    陈祥锋, 马淑燕, 刘苍字. 闽江口动力沉积特征的探讨[J]. 海洋通报, 1998, 17(6):40-47

    CHEN Xiangfeng, MA Shuyan, LIU Cangzi. Dynamic deposition characteristics of the Minjiang Estuary[J]. Marine Science Bulletin, 1998, 17(6):40-47.

    [64]

    杨世伦, 时钟, 赵庆英. 长江口潮沼植物对动力沉积过程的影响[J]. 海洋学报, 2001, 23(4):75-80

    YANG Shilun, SHI Zhong, ZHAO Qingying. Influence of tidal marsh vegetations on hydrodynamics and sedimentation in the Changjiang Estuary[J]. Acta Oceanologica Sinica, 2001, 23(4):75-80.

    [65]

    Yang S L, Shi B W, Bouma T J, et al. Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze Estuary[J]. Estuaries and Coasts, 2012, 35(1):169-182. doi: 10.1007/s12237-011-9424-4

    [66]

    Zhao Y, Peng Z, He Q, et al. Wave attenuation over combined salt marsh vegetation[J]. Ocean Engineering, 2023, 267:113234. doi: 10.1016/j.oceaneng.2022.113234

  • 加载中

(9)

(1)

计量
  • 文章访问数:  459
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2023-09-11
修回日期:  2023-11-28
录用日期:  2023-11-28
刊出日期:  2023-12-28

目录