The composition and source of hydrocarbons in the hydrothermal products of Tangyin and Yonaguni Knoll IV hydrothermal fields from the Okinawa Trough
-
摘要:
通过气相色谱-质谱联用仪(GC-MS)和气相色谱-同位素质谱仪(GC-IRMS),分别分析了冲绳海槽南部唐印和第四与那国热液区热液硫化物与热液沉积物中烷烃含量和正烷烃单体碳同位素组成特征。热液产物样品中正烷烃显示出明显的双峰分布,高分子正烷烃显示出明显的奇数碳优势,其丰度最大值位于C31处;低分子正烷烃显示出偶数碳优势,其丰度最大值位于C18处。正烷烃的分布特征以及正烷烃碳同位素组成表明,样品中正烷烃主要来源于热液微生物代谢活动和陆源高等植物的输入,其中,低分子的正烷烃主要来源于热液微生物代谢活动,而高分子的正烷烃主要来源于陆源高等植物。热液硫化物样品中低分子正烷烃含量和比重都高于热液沉积物,表明热液硫化物中热液微生物活动可能更加繁盛。热液硫化物中正烷烃单体的δ13C表现出随碳原子个数增加,同位素值减小的趋势,暗示该区非生物合成有机质的贡献可能不能忽略。
Abstract:The hydrothermal sulfide and sediment of the Tangyin and Yonaguni Knoll Ⅳ hydrothermal fields in the southern Okinawa Trough were analyzed in gas chromatography-mass spectrometry (GC-MS) and gas chromatography-isotope ratio mass spectrometry (GC-IRMS), by which the abundances of hydrocarbons and the individual C isotope compositions of n-alkane were determined. The n-alkanes in the hydrothermal products conformed to a bimodal distribution, and exhibited an odd-to-even predominance of high molecular weight n-alkanes with maxima at C31 and an even-to-odd predominance of low molecular weight n-alkanes with maxima at C18. The distribution and individual carbon isotopic compositions of n-alkanes suggest that the low molecular weight n-alkanes in hydrothermal products may be mainly the result of the metabolic activity of submarine hydrothermal microorganisms, and the high-molecular weight n-alkanes in hydrothermal products may be derived from mainly the terrigenous inputs. The content and proportion of low-molecular n-alkanes in hydrothermal sulfides are higher than those of hydrothermal sediment, indicating that hydrothermal microbial activity might be more flourishing in hydrothermal sulfide. The δ13C values of the n-alkanes in the hydrothermal sulfide samples tend to decrease as the number of carbon atoms increased, which suggest that the abiogenic contribution to the source of hydrocarbons in hydrothermal sulfides shall not be ignored.
-
表 1 样品中正烷烃组成
Table 1. Composition of n-alkanes in the samples
μg/g 烃类 TVG10-2 TVG11-2-1 TVG11-2-2 正十六烷 0.239 0.452 0.263 降姥鲛烷 0.088 0.109 0.042 正十七烷 0.312 0.377 0.312 姥鲛烷 0.418 0.530 0.186 正十八烷 1.229 1.296 0.869 植烷 1.443 3.582 1.197 正十九烷 0.724 1.013 0.386 正二十烷 0.488 1.112 0.405 正二十一烷 0.704 0.519 0.837 正二十二烷 0.351 0.379 2.586 正二十三烷 0.722 0.819 0.817 正二十四烷 0.255 0.487 1.951 正二十五烷 0.602 0.430 0.348 正二十六烷 0.284 0.350 0.306 正二十七烷 0.273 0.310 0.382 正二十八烷 0.317 0.503 0.317 正二十九烷 0.504 0.429 0.693 正三十烷 0.437 0.276 0.381 正三十一烷 1.187 0.603 3.154 正三十二烷 0.515 0.212 1.992 正三十三烷 0.999 0.735 0.618 正三十四烷 0.134 0.075 0.127 正三十五烷 0.436 0.284 0.249 烷烃总含量 12.660 14.882 18.420 m(Pr)/m(Ph) 0.290 0.148 0.156 ΣT/ΣM 1.539 0.882 2.788 OEP17 0.442 0.468 0.499 OEP29 1.152 0.843 2.256 注:m(Pr)/m(Ph)=姥鲛烷和植烷含量比值;ΣT/ΣM=Σm(C25-35 )/Σm(C15-21);OEP17=[m(C15)+6m(C17)+m(C19)]/[4m(C16)+4m(C18)];OEP29=[m(C27)+6m(C29)+m(C31)]/[4m(C28)+4m(C30)]。 表 2 样品中正烷烃的单体碳同位素值
Table 2. The δ13C values of n-alkanes in samples
烃类 δ13C值/(‰,PDB) TVG10-2 TVG11-2-1 TVG11-2-2 正十六烷 −26.7 −25.7 −30.9 正十七烷 −26.8 −25.9 −32.8 正十八烷 −26.4 −25.1 −31.9 正十九烷 −28.7 −27.6 −33.0 正二十烷 −26.7 −26.0 −31.3 正二十一烷 −29.1 −27.1 −32.4 正二十二烷 −26.8 −26.8 −31.0 正二十三烷 −28.2 −27.3 −30.7 正二十四烷 −27.4 −27.6 −30.0 正二十五烷 −29.2 −28.0 −30.6 正二十六烷 −27.8 −27.9 −30.6 正二十七烷 −29.9 −28.9 −31.9 正二十八烷 −28.2 −28.6 −32.6 正二十九烷 −31.0 −30.6 −32.5 正三十烷 −30.0 −30.9 −32.3 正三十一烷 −31.9 −32.8 −32.2 正三十二烷 −32.3 −32.3 −32.1 正三十三烷 −31.6 −33.6 −31.7 正三十四烷 −31.3 −32.4 −31.7 正三十五烷 −32.3 −33.5 −33.9 -
[1] Lein A Y, Peresypkin V I, Simoneit B R T. Origin of hydrocarbons in hydrothermal sulfide ores in the mid-Atlantic ridge[J]. Lithology and Mineral Resources, 2003, 38(5):383-393. doi: 10.1023/A:1025525818526
[2] Simoneit B R T, Lein A Y, Peresypkin V I, et al. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N)[J]. Geochimica et Cosmochimica Acta, 2004, 68(10):2275-2294. doi: 10.1016/j.gca.2003.11.025
[3] Peng X T, Li J W, Zhou H Y, et al. Characteristics and source of inorganic and organic compounds in the sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges[J]. Journal of Asian Earth Sciences, 2011, 41(3):355-368. doi: 10.1016/j.jseaes.2011.03.005
[4] Huang X, Chen S, Zeng Z G, et al. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough[J]. Marine Pollution Bulletin, 2017, 115(1-2):507-514. doi: 10.1016/j.marpolbul.2016.12.034
[5] Huang X, Chen S, Wang X Y, et al. The distribution and composition of hydrocarbons in sediments of the South Mid-Atlantic Ridge[J]. Acta Oceanologica Sinica, 2018, 37(1):89-96. doi: 10.1007/s13131-018-1160-1
[6] Huang X, Huang C, Qi Y L, et al. Characteristics of hydrocarbons in hydrothermal products of the Clam hydrothermal field from the Okinawa trough[J]. Marine Pollution Bulletin, 2021, 167:112277. doi: 10.1016/j.marpolbul.2021.112277
[7] 周怀阳, 李江涛, 彭晓彤. 海底热液活动与生命起源[J]. 自然杂志, 2009, 31(4):207-212
ZHOU Huaiyang, LI Jiangtao, PENG Xiaotong. Seafloor hydrothermal system and the origin of life[J]. Chinese Journal of Nature, 2009, 31(4):207-212.
[8] Konn C, Charlou J L, Donval J P, et al. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents[J]. Chemical Geology, 2009, 258(3-4):299-314. doi: 10.1016/j.chemgeo.2008.10.034
[9] Chernova T G, Rao P S, Pikovskii Y I, et al. The composition and the source of hydrocarbons in sediments taken from the tectonically active Andaman Backarc Basin, Indian Ocean[J]. Marine Chemistry, 2001, 75(1-2):1-15. doi: 10.1016/S0304-4203(01)00021-4
[10] Venkatesan M I, Ruth E, Rao P S, et al. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean[J]. Applied Geochemistry, 2003, 18(6):845-861. doi: 10.1016/S0883-2927(02)00180-4
[11] Simoneit B R T. Lipid/bitumen maturation by hydrothermal activity in sediments of middle valley, Leg 139[M]//Mottl M J, Davis E E, Fisher A T, et al. Proceedings of the Ocean Drilling Program, Scientific Results. Texas: College Station, 1994: 447-465.
[12] Simoneit B R T, Grimalt J O, Hayes J M, et al. Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea[J]. Geochimica et Cosmochimica Acta, 1987, 51(4):879-894. doi: 10.1016/0016-7037(87)90101-3
[13] Michaelis W, Jenisch A, Richnow H H. Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban deeps[J]. Applied Geochemistry, 1990, 5(1-2):103-114. doi: 10.1016/0883-2927(90)90041-3
[14] Kvenvolden K A, Rapp J B, Hostettler F D, et al. Petroleum associated with polymetallic sulfide in sediment from gorda ridge[J]. Science, 1986, 234(4781):1231-1234. doi: 10.1126/science.234.4781.1231
[15] Li J W, Zhou H Y, Peng X T, et al. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney[J]. Journal of Sea Research, 2011, 65(3):333-339. doi: 10.1016/j.seares.2011.01.005
[16] Li J W, Peng X T, Zhou H Y, et al. Characteristics and source of polycyclic aromatic hydrocarbons in the surface hydrothermal sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges[J]. Geochemical Journal, 2012, 46(1):31-43. doi: 10.2343/geochemj.1.0150
[17] Shulga N A, Peresypkin V I, Revelskii I A. Composition research of n-alkanes in the samples of hydrothermal deposits of the Mid-Atlantic Ridge by means of gas chromatography-mass spectrometry[J]. Oceanology, 2010, 50(4):479-487. doi: 10.1134/S0001437010040041
[18] Proskurowski G, Lilley M D, Seewald J S, et al. Abiogenic hydrocarbon production at lost city hydrothermal field[J]. Science, 2008, 319(5863):604-607. doi: 10.1126/science.1151194
[19] Bradley A S, Summons R E. Multiple origins of methane at the Lost City Hydrothermal Field[J]. Earth and Planetary Science Letters, 2010, 297(1-2):34-41. doi: 10.1016/j.jpgl.2010.05.034
[20] Morgunova I P, Ivanov V N, Litvinenko I V, et al. Geochemistry of organic matter in bottom sediments of the Ashadze hydrothermal field[J]. Oceanology, 2012, 52(3):345-353. doi: 10.1134/S0001437012030083
[21] Petrova V I, Batova G I, Kursheva A V, et al. Geochemistry of organic matter of bottom sediments in the rises of the central Arctic Ocean[J]. Russian Geology and Geophysics, 2010, 51(1):88-97. doi: 10.1016/j.rgg.2009.12.008
[22] Zhang Q L, Hou Z Q, Tang S H. Organic composition of sulphide ores in the okinawa trough and its implications[J]. Acya Geologica Sinica, 2001, 75(2):196-203.
[23] 黄鑫, 陈法锦, 祁雅莉, 等. 冲绳海槽北部柱状沉积物中有机质地球化学特征—对热液活动的指示[J]. 海洋科学, 2018, 42(6):1-11
HUANG Xin, CHEN Fajin, QI Yali, et al. The geochemical characteristics of organic matter in sediment core of the northern of the Okinawa Trough: implication for hydrothermal activity[J]. Marine Sciences, 2018, 42(6):1-11.
[24] Zhang X, Zhai S K, Yu Z H, et al. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough[J]. Ore Geology Reviews, 2019, 111:102944. doi: 10.1016/j.oregeorev.2019.102944
[25] Letouzey J, Kimura M. The Okinawa Trough: genesis of a back-arc basin developing along a continental margin[J]. Tectonophysics, 1986, 125(1-3):209-230. doi: 10.1016/0040-1951(86)90015-6
[26] Halbach P, Pracejus B, Maerten A. Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan[J]. Economic Geology, 1993, 88(8):2210-2225. doi: 10.2113/gsecongeo.88.8.2210
[27] Sibuet J C, Deffontaines B, Hsu S K, et al. Okinawa trough backarc basin: Early tectonic and magmatic evolution[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30245-30267. doi: 10.1029/98JB01823
[28] 李怀明, 翟世奎. 冲绳海槽岩浆活动研究进展及思考[J]. 地质论评, 2008, 54(1):120-124 doi: 10.3321/j.issn:0371-5736.2008.01.013
LI Huaiming, ZHAI Shikui. Advances and developments in study of the magmatism in the Okinawa Trough[J]. Geological Review, 2008, 54(1):120-124. doi: 10.3321/j.issn:0371-5736.2008.01.013
[29] Wang L, Yu M, Liu Y, et al. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough[J]. Journal of Marine Systems, 2018, 180:162-172. doi: 10.1016/j.jmarsys.2016.11.012
[30] Yan Q S, Shi X F. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: a review[J]. Acta Oceanologica Sinica, 2014, 33(4):1-12. doi: 10.1007/s13131-014-0400-2
[31] Shinjo R, Chung S L, Kato Y, et al. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B5):10591-10608. doi: 10.1029/1999JB900040
[32] Wang S Je, Sun W D, Huang J, et al. S, Pb, and Fe isotope compositions of sulfides in middle and southern Okinawa Trough: implying the complicated hydrothermal systems in back-arc spreading centers[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2023, 195:104006. doi: 10.1016/j.dsr.2023.104006
[33] Klingelhoefer F, Lee C S, Lin J Y, et al. Structure of the southernmost Okinawa Trough from reflection and wide-angle seismic data[J]. Tectonophysics, 2009, 466(3-4):281-288. doi: 10.1016/j.tecto.2007.11.031
[34] Fujikura K, Fujiwara Y, Ishibashi J I, et al. Report on investigation of hydrothermal vent ecosystems by the crewed submersible ‘Shinkai 2000’ on the Dai-yon (no. 4) Yonaguni Knoll and the Hatoma Knoll, the Okinawa Trough[J]. JAMSTEC Journal of Deep Sea Research, 2001, 1(9):141-154.
[35] 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011
ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.
[36] Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough[J]. Ore Geology Reviews, 2017, 87:172-191. doi: 10.1016/j.oregeorev.2016.09.015
[37] 尚鲁宁, 陈磊, 张训华, 等. 冲绳海槽南部海底热液活动区地形地貌特征及成因分析[J]. 海洋地质与第四纪地质, 2019, 39(4):12-22 doi: 10.16562/j.cnki.0256-1492.2017112301
SHANG Luning, CHEN Lei, ZHANG Xunhua, et al. Topographic features of the hydrothermal field and their genetic mechanisms in southern Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2019, 39(4):12-22. doi: 10.16562/j.cnki.0256-1492.2017112301
[38] Guo K, Zhai S K, Wang X Y, et al. The dynamics of the southern Okinawa Trough magmatic system: new insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology, 2018, 497:146-161. doi: 10.1016/j.chemgeo.2018.09.002
[39] Zhang X, Zhai S K, Yu Z H, et al. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough[J]. Journal of Marine Systems, 2018, 180:124-131. doi: 10.1016/j.jmarsys.2016.11.007
[40] Zhang X, Zhai S K, Sun Z L, et al. Rare earth elements and Sr, S isotope compositions of hydrothermal deposits from the Okinawa Trough: insight into mineralization condition and metal sources[J]. Marine Geology, 2022, 443:106683. doi: 10.1016/j.margeo.2021.106683
[41] Wang S, Cao X C, Liu L J, et al. Stakelama marina sp. nov. , isolated from seawater of the Tangyin hydrothermal field in the Okinawa Trough[J]. International Journal of Systematic and Evolutionary Microbiology, 2023, 73(5): 005902.
[42] Yang B J, Liu J H, Shi X F, et al. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough[J]. Ore Geology Reviews, 2020, 120:103464. doi: 10.1016/j.oregeorev.2020.103464
[43] Yang Z F, Xiao X, Zhang Y. Microbial diversity of sediments from an inactive hydrothermal vent field, Southwest Indian Ridge[J]. Marine Life Science & Technology, 2020, 2(1):73-86.
[44] McCollom T M, Seewald J S. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments[J]. Chemical Reviews, 2007, 107(2):382-401. doi: 10.1021/cr0503660
[45] Konn C, Testemale D, Querellou J, et al. New insight into the contributions of thermogenic processes and biogenic sources to the generation of organic compounds in hydrothermal fluids[J]. Geobiology, 2011, 9(1):79-93. doi: 10.1111/j.1472-4669.2010.00260.x
[46] Elias V O, Simoneit B R T, Cardoso J N. Even N-alkane predominances on the amazon shelf and a northeast pacific hydrothermal system[J]. Naturwissenschaften, 1997, 84(9):415-420. doi: 10.1007/s001140050421
[47] Xu Z K, Li T G, Chang F M, et al. Clay-sized sediment provenance change in the northern Okinawa Trough since 22 kyrBP and its paleoenvironmental implication[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399:236-245. doi: 10.1016/j.palaeo.2014.01.016
[48] Li T G, Xu Z K, Lim D, et al. Sr-Nd isotopic constraints on detrital sediment provenance and paleoenvironmental change in the northern Okinawa Trough during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430:74-84. doi: 10.1016/j.palaeo.2015.04.017
[49] 陈祖兴. 冲绳海槽南部火山岩的成因及其对弧后盆地壳幔相互作用的指示意义[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2019
CHEN Zuxing. Petrogenesis of volcanic rocks from the southern Okinawa Trough and its implications for crust-mantle interaction in the back-arc basin[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2019.
[50] Fichken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7-8):745-749. doi: 10.1016/S0146-6380(00)00081-4
[51] Mead R, Xu Y P, Chong J, et al. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry, 2005, 36(3):363-370. doi: 10.1016/j.orggeochem.2004.10.003
[52] Simoneit B R T. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Middle Valley, Northeastern Pacific Ocean[J]. Applied Geochemistry, 2002, 17(11):1429-1433. doi: 10.1016/S0883-2927(02)00110-5
[53] Brazelton W J, Schrenk M O, Kelley D S, et al. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem[J]. Applied and Environmental Microbiology, 2006, 72(9):6257-6270. doi: 10.1128/AEM.00574-06
[54] Corre E, Reysenbach A L, Prieur D. ϵ-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge[J]. FEMS Microbiology Letters, 2001, 205(2):329-335.