天然气水合物微观测试技术与应用进展

刘昌岭, 张永超, 纪云开, 孟庆国, 郝锡荦, 孙建业, 胡高伟, 陈强, 李承峰, 刘乐乐. 天然气水合物微观测试技术与应用进展[J]. 海洋地质与第四纪地质, 2024, 44(3): 136-148. doi: 10.16562/j.cnki.0256-1492.2023102301
引用本文: 刘昌岭, 张永超, 纪云开, 孟庆国, 郝锡荦, 孙建业, 胡高伟, 陈强, 李承峰, 刘乐乐. 天然气水合物微观测试技术与应用进展[J]. 海洋地质与第四纪地质, 2024, 44(3): 136-148. doi: 10.16562/j.cnki.0256-1492.2023102301
LIU Changling, ZHANG Yongchao, JI Yunkai, MENG Qingguo, HAO Xiluo, SUN Jianye, HU Gaowei, CHEN Qiang, LI Chengfeng, LIU Lele. Advances in microscopic testing techniques and applications for natural gas hydrates[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 136-148. doi: 10.16562/j.cnki.0256-1492.2023102301
Citation: LIU Changling, ZHANG Yongchao, JI Yunkai, MENG Qingguo, HAO Xiluo, SUN Jianye, HU Gaowei, CHEN Qiang, LI Chengfeng, LIU Lele. Advances in microscopic testing techniques and applications for natural gas hydrates[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 136-148. doi: 10.16562/j.cnki.0256-1492.2023102301

天然气水合物微观测试技术与应用进展

  • 基金项目: 国家自然科学基金项目 “海洋沉积物中水合物生成过程的孔隙水转化规律及其控制机理研究”(42176212 ),“南海含有孔虫沉积物双重孔隙特征对水合物分解过程中渗透率演化的影响机理”(42006181);海洋地质调查专项(DD20221704);山东省自然科学基金“含有空充沉积物微观孔隙特征对水合物生成和赋存的影响”(ZR2020QE109)
详细信息
    作者简介: 刘昌岭(1966—),男,博士,研究员,主要从事天然气水合物模拟实验与测试技术研究,E-mail:qdliuchangling@163.com
  • 中图分类号: P744

Advances in microscopic testing techniques and applications for natural gas hydrates

  • 天然气水合物作为一种重要的战略资源,其在沉积物中的动态聚散过程非常复杂,涉及的许多科学问题需要从微观层面来解答。微观测试技术可以在毫米、微米甚至纳米尺度上获取研究对象的状态、演化等特征信息,是天然气水合物基础研究的重要手段。本文系统回顾了基于X射线计算机层析扫描(X-CT)、X射线衍射(XRD)、固体核磁共振(NMR)、低场核磁共振(LFNMR)、拉曼光谱(RM)、扫描电子显微镜(SEM)和高压差示扫描量热(HPDSC)等技术建立的天然气水合物微观测试技术体系;重点介绍了各项技术的特点及进展,以及相关微观测试技术在含水合物沉积物微观结构量化表征、微观渗流特征等方面的应用成果与最新进展;提出了天然气水合物微观测试技术与应用的研究方向与趋势,旨在为天然气水合物的深入研究提供更多思路。

  • 加载中
  • 图 1  天然气水合物微观测试技术体系

    Figure 1. 

    图 2  沉积物中甲烷水合物相变过程的T2分布演化三维图

    Figure 2. 

    图 3  通过SEM观察到的水合物表面形貌对比[73]

    Figure 3. 

    图 4  基于X-CT图像表征的砂质样品在水合物分解过程中的孔隙结构参数演化规律[80]

    Figure 4. 

    图 5  基于LFNMR表征的砂质样品在水合物分解过程中的半径分布演化规律[64]

    Figure 5. 

    图 6  基于X-CT图像的水合物分解过程中表面形态演化规律[49]

    Figure 6. 

    图 7  水合物分解界面比表面积测量结果和分形模型预测结果[49]

    Figure 7. 

    图 8  基于X-CT技术获取的(a)孔隙、(b)水相以及(c)气相微观空间分布与(d)孔隙、(e)水相以及(f)气相面积分形维数[93]

    Figure 8. 

    表 1  天然气水合物微观测试技术及应用表

    Table 1.  Microscopic testing techniques for gas hydrates and related applications

    测试类型探测技术天然气水合物性质
    晶体结构测试XRD结构鉴定;晶格参数;生长速率;相的鉴定;晶格参数随温度变化;热膨胀;高压下的相转换性质
    谱学测试NMR结构鉴定;化学组成;笼占有率与水移动性;晶核与晶核间的相互作用;弛豫过程及其与温度、压力的依赖
    RM气体分子化学键的伸缩、扭转振动;微观结构与稳定性;生成与分解过程;气体组成与笼占有率
    沉积物孔隙结构测试X-CT沉积物中水合物生成与分解原位观测;沉积物中水合物的位置确定;3D形态学;孔隙空间通道;扩散率与渗透率
    LFNMR分子间相互作用;弛豫时间;孔隙结构;水合物生成与分解;渗透率模型
    表面形貌测试SEM生长过程和形态学;晶体分布与结构;含水合物沉积物微观结构发育
    AFM3D形态学,水合物与颗粒间的粘附力;水合物自身的力学行为
    热学测试HPDSC热力学与相平衡性质(生成与分解焓、热导率、热容量);结晶与融化;水合物抑制剂的动力学、
    热力学、聚合物-水相互作用、作用模型
    注:此表据刘昌岭等[2]以及Rojas and Lou[34]修改
    下载: 导出CSV
  • [1]

    刘昌岭, 郝锡荦, 孟庆国, 等. 气体水合物基础特性研究进展[J]. 海洋地质前沿, 2020, 36(9):1-10

    LIU Changling, HAO Xiluo, MENG Qingguo, et al. Research progress in basic characteristics of gas hydrate[J]. Marine Geology Frontiers, 2020, 36(9):1-10.]

    [2]

    刘昌岭, 孟庆国. 天然气水合物实验测试技术[M]. 北京: 科学出版社, 2016

    LIU Changling, MENG Qingguo. Gas Hydrates Experiment and Testing Technologies[M]. Beijing: Science Press, 2016.]

    [3]

    中国海洋工程咨询协会. T/CAOE 23-2020 天然气水合物实验测试技术规范[S]. 2020

    China Ocean Engineering Consulting Association. Technical specification for test methods of natural gas hydrates[S]. 2020.]

    [4]

    刘昌岭, 孟庆国. X射线衍射法在天然气水合物研究中的应用[J]. 岩矿测试, 2014, 33(4):468-479

    LIU Changling, MENG Qingguo. Applications of X-ray diffraction in natural gas hydrate research[J]. Rock and Mineral Analysis, 2014, 33(4):468-479.]

    [5]

    孟庆国. 多组分气体水合物结构特征及生成分解过程研究[D]. 北京: 中国地质科学院博士学位论文, 2019

    MENG Qingguo. A dissertation submitted to Chinese academy of geological sciences for doctoral degree[D]. Doctor Dissertation of Chinese Academy of Geological Sciences, 2019.]

    [6]

    Liu C L, Meng Q G, Hu G W, et al. Characterization of hydrate-bearing sediments recovered from the Shenhu area of the South China Sea[J]. Interpretation, 2017, 5(3):SM13-SM23. doi: 10.1190/INT-2016-0211.1

    [7]

    Arzbacher S, Rahmatian N, Ostermann A, et al. Macroscopic defects upon decomposition of CO2 clathrate hydrate crystals[J]. Physical Chemistry Chemical Physics, 2019, 21(19):9694-9708. doi: 10.1039/C8CP07871H

    [8]

    孟庆国, 刘昌岭, 李承峰, 等. 常见客体分子对笼型水合物晶格常数的影响[J]. 物理化学学报, 2020, 36(11):1910010

    MENG Qingguo, LIU Changling, LI Chengfeng, et al. Effect of common guest molecules on the lattice constants of clathrate hydrates[J]. Acta Physico-Chimica Sinica, 2020, 36(11):1910010.]

    [9]

    孟庆国, 刘昌岭, 李承峰, 等. X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征[J]. 岩矿测试, 2021, 40(1):85-94

    MENG Qingguo, LIU Changling, LI Chengfeng, et al. Characterization of binary hydrates containing methane by X-ray diffraction and microscopic laser Raman spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1):85-94.]

    [10]

    田苗, 孟庆国, 刘昌岭, 等. 天然气水合物粉晶X射线衍射测试参数优化及分析方法[J]. 岩矿测试, 2017, 36(5):481-488

    TIAN Miao, MENG Qingguo, LIU Changling, et al. Parameter optimization and analysis method for determination of natural gas hydrate by powder X-ray diffraction[J]. Rock and Mineral Analysis, 2017, 36(5):481-488.]

    [11]

    Chen S, Wang Y, Lang X, et al. Multiple H2 occupancies of clathrate hydrate and its significance in hydrogen storage[C]. Singapore, 2023.

    [12]

    Mok J, Choi W, Seo Y. Time-dependent observation of a cage-specific guest exchange in sI hydrates for CH4 recovery and CO2 sequestration[J]. Chemical Engineering Journal, 2020, 389:124434. doi: 10.1016/j.cej.2020.124434

    [13]

    Zhou X B, Zhang Q, Long Z, et al. In situ PXRD analysis on the kinetic effect of PVP-K90 and PVCap on methane hydrate dissociation below ice point[J]. Fuel, 2021, 286:119491. doi: 10.1016/j.fuel.2020.119491

    [14]

    Pakhomova A, Collings I E, Journaux B, et al. Host-guest hydrogen bondingin high-pressure acetone clathrate hydrates: in situ single-crystal X-ray diffraction study[J]. The Journal of Physical Chemistry Letters, 2022, 13(7):1833-1838. doi: 10.1021/acs.jpclett.1c03911

    [15]

    Naeiji P, Pan M D, Luzi-Helbing M, et al. Experimental and simulation study for the dissociation behavior of gas hydrates – Part I: CH4 hydrates[J]. Energy & Fuels, 2023, 37(6):4484-4496.

    [16]

    Day S J, Thompson S P, Evans A, et al. In situ apparatus for the study of clathrate hydrates relevant to solar system bodies using synchrotron X-ray diffraction and Raman spectroscopy[J]. Astronomy & Astrophysics, 2015, 574:A91.

    [17]

    Subramanian S, Sloan E D. Trends in vibrational frequencies of guests trapped in clathrate hydrate cages[J]. The Journal of Physical Chemistry B, 2002, 106(17):4348-4355. doi: 10.1021/jp013644h

    [18]

    刘昌岭, 李承峰, 孟庆国. 天然气水合物拉曼光谱研究进展[J]. 光散射学报, 2013, 25(4):329-337

    LIU Changling, LI Chengfeng, MENG Qingguo. Progress of Raman spectroscopic research on natural gas hydrate[J]. The Journal of Light Scattering, 2013, 25(4):329-337.]

    [19]

    刘昌岭, 业渝光, 孟庆国. 显微激光拉曼光谱测定甲烷水合物的水合指数[J]. 光谱学与光谱分析, 2010, 30(4): 963-966

    LIU Changling, YE Yuguang, MENG Qingguo. Determination of hydration number of methane hydrates using micro-laser Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(4): 963-966.]

    [20]

    孟庆国, 刘昌岭, 业渝光, 等. 氮气水合物储氢的激光拉曼光谱研究[J]. 光谱学与光谱分析, 2012, 32(8):2139-2142

    MENG Qingguo, LIU Changling, YE Yuguang, et al. Raman spectroscopic investigation of hydrogen storage in nitrogen gas hydrates[J]. Spectroscopy and Spectral Analysis, 2012, 32(8):2139-2142.]

    [21]

    Liu C L, Meng Q G, He X L, et al. Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China[J]. Journal of Geochemical Exploration, 2015, 152:67-74. doi: 10.1016/j.gexplo.2015.02.002

    [22]

    Geo Lim S, Yeop Oh C, Lee J W, et al. Sustainable freshwater recovery from radioactive wastewater by gas hydrate formation[J]. Chemical Engineering Journal, 2023, 461:141830. doi: 10.1016/j.cej.2023.141830

    [23]

    孟庆国, 刘昌岭, 李承峰, 等. 青海聚乎更钻探区天然气水合物拉曼光谱特征[J]. 现代地质, 2015, 29(5):1180-1188 doi: 10.3969/j.issn.1000-8527.2015.05.022

    MENG Qingguo, LIU Changling, LI Chengfeng, et al. Raman spectroscopic characteristics of natural gas hydrates from Juhugeng drilling area, Qinghai[J]. Geoscience, 2015, 29(5):1180-1188.] doi: 10.3969/j.issn.1000-8527.2015.05.022

    [24]

    孟庆国, 刘昌岭, 业渝光, 等. 甲烷水合物分解过程原位激光拉曼光谱观测[J]. 天然气工业, 2010, 30(6):117-120 doi: 10.3787/j.issn.1000-0976.2010.06.032

    MENG Qingguo, LIU Changling, YE Yuguang, et al. In situ Raman spectroscopic observation on methane hydrate dissociation[J]. Natural Gas Industry, 2010, 30(6):117-120.] doi: 10.3787/j.issn.1000-0976.2010.06.032

    [25]

    郝娅楠, 孟庆国, 刘昌岭, 等. 含水合物CH4-H2O体系中溶解甲烷的拉曼光谱原位监测[J]. 中国海洋大学学报, 2017, 47(9):96-103

    HAO Yanan, MENG Qingguo, LIU Changling, et al. In-situ Raman observation of dissolved CH4 in hydrate-bearing CH4-H2O system[J]. Periodical of Ocean University of China, 2017, 47(9):96-103.]

    [26]

    刘昌岭, 业渝光, 孟庆国, 等. 显微激光拉曼光谱原位观测甲烷水合物生成与分解的微观过程[J]. 光谱学与光谱分析, 2011, 31(6):1524-1528 doi: 10.3964/j.issn.1000-0593(2011)06-1524-05

    LIU Changling, YE Yuguang, MENG Qingguo, et al. In situ Raman spectroscopic observation of micro-processes of methane hydrate formation and dissociation[J]. Spectroscopy and Spectral Analysis, 2011, 31(6):1524-1528.] doi: 10.3964/j.issn.1000-0593(2011)06-1524-05

    [27]

    Pan M D, Naeiji P, Schicks J M. Experimental and simulation study for the dissociation behavior of gas hydrates─Part II: sII mixed gas hydrates[J]. Energy & Fuels, 2023, 37(6):4497-4514.

    [28]

    Zhang W, Xu C G, Li X S, et al. Microscopic study on the key process and influence of efficient synthesis of natural gas hydrate by in situ Raman analysis of water microstructure in different systems with temperature drop[J]. Journal of Energy Chemistry, 2023, 82:317-333.

    [29]

    刘昌岭, 孟庆国, 业渝光. 固体核磁共振技术在气体水合物研究中的应用[J]. 波谱学杂志, 2012, 29(3): 465-474

    LIU Changling, MENG Qingguo, YE Yuguang. Applications of solid State NMR in the studies of gas hydrate[J]. Chinese Journal of Magnetic Resonance, 2012, 29(3): 465-474.]

    [30]

    Chu H, Shin K. Highly-selective xenon–krypton separation using hydrate-based technology[J]. Separation and Purification Technology, 2023, 319:124094. doi: 10.1016/j.seppur.2023.124094

    [31]

    孟庆国, 刘昌岭, 业渝光. 13C固体核磁共振测定气体水合物结构实验研究[J]. 分析化学, 2011, 39(9):1447-1450

    MENG Qingguo, LIU Changling, YE Yuguang. 13C solid-state nuclear magnetic resonance investigations of gas hydrate structures[J]. Chinese Journal of Analytical Chemistry, 2011, 39(9):1447-1450.]

    [32]

    孟庆国, 刘昌岭, 业渝光, 等. 13C固体核磁共振法测定CH4-THF二元水合物的微观结构特征[J]. 天然气工业, 2015, 35(3):135-140 doi: 10.3787/j.issn.1000-0976.2015.03.022

    MENG Qingguo, LIU Changling, YE Yuguang, et al. Measurement of micro-structure features of binary CH4-THF clathrate hydrate based on the 13C solid state NMR[J]. Natural Gas Industry, 2015, 35(3):135-140.] doi: 10.3787/j.issn.1000-0976.2015.03.022

    [33]

    Gupta A, Dec S F, Koh C A, et al. NMR investigation of methane hydrate dissociation[J]. The Journal of Physical Chemistry C, 2007, 111(5):2341-2346. doi: 10.1021/jp066536+

    [34]

    Rojas Y, Lou X. Instrumental analysis of gas hydrates properties[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2):310-323. doi: 10.1002/apj.293

    [35]

    付娟, 吴能友, 邬黛黛, 等. 甲烷水合物的固体核磁共振碳谱与激光拉曼光谱研究[J]. 波谱学杂志, 2017, 34(2):148-155 doi: 10.11938/cjmr20170203

    FU Juan, WU Nengyou, WU Daidai, et al. A solid-state 13C NMR and laser Raman spectroscopy study on synthesized methane hydrates[J]. Chinese Journal of Magnetic Resonance, 2017, 34(2):148-155.] doi: 10.11938/cjmr20170203

    [36]

    Park K H, Kim D H, Cha M J. Spectroscopic observations of host-guest interactions occurring in (cyclobutanemethanol + methane) hydrate and their potential application to gas storage[J]. Chemical Engineering Journal, 2021, 421:127835. doi: 10.1016/j.cej.2020.127835

    [37]

    Lee Y, Moon S, Seo D, et al. Hydrogen-bonded clathrate hydrate as tunable media for efficient methane storage[J]. Journal of Environmental Chemical Engineering, 2022, 10(5):108473. doi: 10.1016/j.jece.2022.108473

    [38]

    Jeong J H, Cha M J, Jang J, et al. Thermodynamic behavior and spectroscopic properties of CO and C3H8 mixed gas hydrates: implications for hydrate-based gas separation[J]. Chemical Engineering Journal, 2022, 428:132076. doi: 10.1016/j.cej.2021.132076

    [39]

    Seo D, Moon S, Lee Y, et al. Investigation of tuning behavior of trimethylene oxide hydrate with guest methane molecule and its critical guest concentration[J]. Chemical Engineering Journal, 2020, 389:123582. doi: 10.1016/j.cej.2019.123582

    [40]

    Lee Y, Go W, Kim Y, et al. Molecular guest exchange and subsequent structural transformation in CH4 – CO2 replacement occurring in sH hydrates as revealed by 13C NMR spectroscopy and molecular dynamic simulations[J]. Chemical Engineering Journal, 2023, 455:140937. doi: 10.1016/j.cej.2022.140937

    [41]

    Yang M J, Chong Z R, Zheng J N, et al. Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates[J]. Renewable and Sustainable Energy Reviews, 2017, 74:1346-1360. doi: 10.1016/j.rser.2016.11.161

    [42]

    孟庆国, 刘昌岭, 业渝光. 核磁共振成像原位监测冰融化及四氢呋喃水合物分解的微观过程[J]. 应用基础与工程科学学报, 2012, 20(1):11-20 doi: 10.3969/j.issn.1005-0930.2012.01.002

    MENG Qingguo, LIU Changling, YE Yuguang. In situ monitoring ice melting and tetrahydrofuran hydrates dissociation with magnetic resonance imaging[J]. Journal of Basic Science and Engineering, 2012, 20(1):11-20.] doi: 10.3969/j.issn.1005-0930.2012.01.002

    [43]

    Zhao G J, Yang M J, Lv X, et al. MRI insight on multiphase flow in hydrate-bearing sediment and development mechanism of hydrate seal[J]. Petroleum Science, 2023, 20(6):3854-3864. doi: 10.1016/j.petsci.2023.07.017

    [44]

    Zhao Y C, Lei X, Zheng J N, et al. High resolution MRI studies of CO2 hydrate formation and dissociation near the gas-water interface[J]. Chemical Engineering Journal, 2021, 425:131426. doi: 10.1016/j.cej.2021.131426

    [45]

    Lv J C, Jiang L L, Mu H L, et al. MRI investigation of hydrate pore habits and dynamic seepage characteristics in natural gas hydrates sand matrix[J]. Fuel, 2021, 303:121287. doi: 10.1016/j.fuel.2021.121287

    [46]

    Almenningen S, Gauteplass J, Fotland P, et al. Visualization of hydrate formation during CO2 storage in water-saturated sandstone[J]. International Journal of Greenhouse Gas Control, 2018, 79:272-278. doi: 10.1016/j.ijggc.2018.11.008

    [47]

    姚军, 赵秀才. 数字岩心及孔隙级渗流模拟理论[M]. 北京: 石油工业出版社, 2010

    YAO Jun, ZHAO Xiucai. Digital Core and Pore-Scale Seepage Simulation Theory[M]. Beijing: Petroleum Industry Press, 2010.]

    [48]

    张永超, 刘昌岭, 吴能友, 等. 含水合物沉积物孔隙结构特征与微观渗流模拟研究[J]. 海洋地质前沿, 2020, 36(9):23-33

    ZHANG Yongchao, LIU Changling, WU Nengyou, et al. Advances in the pore-structure characteristics and microscopic seepage numerical simulation of the hydrate-bearing sediments[J]. Marine Geology Frontiers, 2020, 36(9):23-33.]

    [49]

    Zhang Y C, Wan Y Z, Liu L L, et al. Changes in reaction surface during the methane hydrate dissociation and its implications for hydrate production[J]. Energy, 2021, 230:120848. doi: 10.1016/j.energy.2021.120848

    [50]

    Zhang Y C, Li C F, Ma J S, et al. Investigating the effective permeability evolution as a function of hydrate saturation in the hydrate-bearing sands using a kinetic-theory-based pore network model[J]. Computers and Geotechnics, 2022, 150:104930. doi: 10.1016/j.compgeo.2022.104930

    [51]

    Hou J, Ji Y K, Zhou K, et al. Effect of hydrate on permeability in porous media: pore-scale micro-simulation[J]. International Journal of Heat and Mass Transfer, 2018, 126:416-424. doi: 10.1016/j.ijheatmasstransfer.2018.05.156

    [52]

    Li C F, Liu C L, Hu G W, et al. Investigation on the multiparameter of hydrate-bearing sands using nano-focus X-ray computed tomography[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(3):2286-2296. doi: 10.1029/2018JB015849

    [53]

    Liu C L, Ye Y G, Meng Q G, et al. The characteristics of gas hydrates recovered from Shenhu area in the South China Sea[J]. Marine Geology, 2012, 307-310:22-27. doi: 10.1016/j.margeo.2012.03.004

    [54]

    Murshed M M, Klapp S A, Enzmann F, et al. Natural gas hydrate investigations by synchrotron radiation X-ray cryo-tomographic microscopy (SRXCTM)[J]. Geophysical Research Letters, 2008, 35(23):L23612.

    [55]

    Chaouachi M, Falenty A, Sell K, et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6):1711-1722. doi: 10.1002/2015GC005811

    [56]

    Kim J, Kim S, Park C, et al. Construction of prior models for ES-MDA by a deep neural network with a stacked autoencoder for predicting reservoir production[J]. Journal of Petroleum Science and Engineering, 2020, 187:106800. doi: 10.1016/j.petrol.2019.106800

    [57]

    Ta X H, Yun T S, Muhunthan B, et al. Observations of pore-scale growth patterns of carbon dioxide hydrate using X-ray computed microtomography[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(3):912-924. doi: 10.1002/2014GC005675

    [58]

    Chen X Y, Espinoza D N. Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate[J]. Fuel, 2018, 214:614-622. doi: 10.1016/j.fuel.2017.11.065

    [59]

    Lv J C, Cheng Z C, Xue K P, et al. Pore-scale morphology and wettability characteristics of xenon hydrate in sand matrix: laboratory visualization with micro-CT[J]. Marine and Petroleum Geology, 2020, 120:104525. doi: 10.1016/j.marpetgeo.2020.104525

    [60]

    Liu Z C, Kim J, Lei L, et al. Tetrahydrofuran hydrate in clayey sediments: laboratory formation, morphology, and wave characterization[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4):3307-3319. doi: 10.1029/2018JB017156

    [61]

    胡高伟, 李承峰, 业渝光, 等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报, 2014, 57(5):1675-1682 doi: 10.6038/cjg20140530

    HU Gaowei, LI Chengfeng, YE Yuguang, et al. Observation of gas hydrate distribution in sediment pore space[J]. Chinese Journal of Geophysics, 2014, 57(5):1675-1682.] doi: 10.6038/cjg20140530

    [62]

    Guo J C, Zhou H Y, Zeng J, et al. Advances in low-field nuclear magnetic resonance (NMR) technologies applied for characterization of pore space inside rocks: a critical review[J]. Petroleum Science, 2020, 17(5):1281-1297. doi: 10.1007/s12182-020-00488-0

    [63]

    Ji Y K, Hou J, Zhao E M, et al. Study on the effects of heterogeneous distribution of methane hydrate on permeability of porous media using low-field NMR technique[J]. Journal of Geophysical Research:Solid Earth, 2020, 125(2):e2019JB018572. doi: 10.1029/2019JB018572

    [64]

    Zhang Y C, Liu L L, Wang D G, et al. Application of low-field nuclear magnetic resonance (LFNMR) in characterizing the dissociation of gas hydrate in a porous media[J]. Energy & Fuels, 2021, 35(3):2174-2182.

    [65]

    Liu Z, Chen L T, Wang Z Y, et al. Hydrate phase equilibria in natural sediments: inhibition mechanism and NMR-based prediction method[J]. Chemical Engineering Journal, 2023, 452:139447.

    [66]

    Ma S H, Zheng J N, Tian M R, et al. NMR quantitative investigation on methane hydrate formation characteristics under different driving forces[J]. Fuel, 2020, 261:116364. doi: 10.1016/j.fuel.2019.116364

    [67]

    Ji Y K, Liu C L, Zhang Z, et al. Experimental study on characteristics of pore water conversion during methane hydrates formation in unsaturated sand[J]. China Geology, 2022, 5(2):276-284.

    [68]

    Ji Y K, Hou J, Cui G D, et al. Experimental study on methane hydrate formation in a partially saturated sandstone using low-field NMR technique[J]. Fuel, 2019, 251:82-90. doi: 10.1016/j.fuel.2019.04.021

    [69]

    Liu L L, Zhang Z, Liu C L, et al. Nuclear magnetic resonance transverse surface relaxivity in quartzitic sands containing gas hydrate[J]. Energy & Fuels, 2021, 35(7):6144-6152.

    [70]

    李文郁, 尹健昊, 王健, 等. 低场核磁共振技术在水泥基材料中的理论模型及应用[J]. 硅酸盐学报, 2022, 50(11):2992-3008

    LI Wenyu, YIN Jianhao, WANG Jian, et al. Principles and applications of low-field nuclear magnetic resonance in cementitious materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(11):2992-3008.]

    [71]

    Stern L A, Kirby S H, Durham W B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice[J]. Science, 1996, 273(5283):1843-1848.

    [72]

    庞水全. 基于扫描电子显微镜的微结构特征尺寸测量方法研究[D]. 华南理工大学博士学位论文, 2022

    PANG Shuiquan. Research on measurement method of microstructure feature size based on scanning electron microscope[D]. Doctor Dissertation of South China University of Technology, 2022.]

    [73]

    Tang C P, Zhou X B, Li D L, et al. In situ Raman investigation on mixed CH4-C3H8 hydrate dissociation in the presence of polyvinylpyrrolidone[J]. Fuel, 2018, 214:505-511. doi: 10.1016/j.fuel.2017.11.063

    [74]

    彭力. 基于原子力显微镜的四氢呋喃水合物表面特征与力学行为研究[D]. 中国地质大学博士学位论文, 2020

    PENG Li. Study on surface characteristics and mechanical behavior of THF hydrate by atomic force microscope[D]. Doctor Dissertation of China University of Geosciences, 2020.]

    [75]

    Chen Q, Liu C L, Ye Y G. Differential scanning calorimetry research of hydrates phase equilibrium in porous media[J]. Advanced Materials Research, 2012, 512-515:2122-2126. doi: 10.4028/www.scientific.net/AMR.512-515.2122

    [76]

    Kim S, Lee S H, Kang Y T. Characteristics of CO2 hydrate formation/dissociation in H2O + THF aqueous solution and estimation of CO2 emission reduction by district cooling application[J]. Energy, 2017, 120:362-373. doi: 10.1016/j.energy.2016.11.086

    [77]

    Lee J, Kim K S, Seo Y. Thermodynamic, structural, and kinetic studies of cyclopentane + CO2 hydrates: applications for desalination and CO2 capture[J]. Chemical Engineering Journal, 2019, 375:121974. doi: 10.1016/j.cej.2019.121974

    [78]

    Li X Y, Zhong D L, Englezos P, et al. Insights into the self-preservation effect of methane hydrate at atmospheric pressure using high pressure DSC[J]. Journal of Natural Gas Science and Engineering, 2021, 86:103738. doi: 10.1016/j.jngse.2020.103738

    [79]

    Torré J P, Plantier F, Marlin L, et al. A novel stirred microcalorimetric cell for DSC measurements applied to the study of ice slurries and clathrate hydrates[J]. Chemical Engineering Research and Design, 2020, 160:465-475. doi: 10.1016/j.cherd.2020.06.019

    [80]

    刘乐乐, 吴能友, 张永超, 等. 海洋天然气水合物开采储层渗流基础[M]. 北京: 科学出版社, 2022

    LIU Lele, WU Nengyou, ZHANG Yongchao, et al. Foundation of Reservoir Seepage for the Exploitation of Marine Natural Gas Hydrate[M]. Beijing: Science Press, 2022.]

    [81]

    Wang D G, Li Y, Liu C L, et al. Study of hydrate occupancy, morphology and microstructure evolution with hydrate dissociation in sediment matrices using X-ray micro-CT[J]. Marine and Petroleum Geology, 2020, 113:104138. doi: 10.1016/j.marpetgeo.2019.104138

    [82]

    张永超, 刘昌岭, 刘乐乐, 等. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质, 2021, 41(3):193-202

    ZHANG Yongchao, LIU Changling, LIU Lele, et al. Sediment pore-structure and permeability variation induced by hydrate formation: evidence from low field nuclear magnetic resonance observation[J]. Marine Geology & Quaternary Geology, 2021, 41(3):193-202.]

    [83]

    陈合龙, 韦昌富, 田慧会, 等. CO2水合物在砂中生成和分解的核磁共振弛豫响应(英文)[J]. 物理化学学报, 2017, 33(8):1599-1604 doi: 10.3866/PKU.WHXB201704194

    CHEN Helong, WEI Changfu, TIAN Huihui, et al. NMR relaxation response of CO2 hydrate formation and dissociation in sand[J]. Acta Physico-Chimica Sinica, 2017, 33(8):1599-1604.] doi: 10.3866/PKU.WHXB201704194

    [84]

    Ge X M, Liu J Y, Fan Y R, et al. Laboratory investigation into the formation and dissociation process of gas hydrate by low-field NMR technique[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(5):3339-3346. doi: 10.1029/2017JB014705

    [85]

    Zhang Z, Liu L L, Li C F, et al. A testing assembly for combination measurements on gas hydrate-bearing sediments using x-ray computed tomography and low-field nuclear magnetic resonance[J]. Review of Scientific Instruments, 2021, 92(8):085108. doi: 10.1063/5.0040858

    [86]

    Zhang Y C, Liu L L, Wang D G, et al. The interface evolution during methane hydrate dissociation within quartz sands and its implications to the permeability prediction based on NMR data[J]. Marine and Petroleum Geology, 2021, 129:105065. doi: 10.1016/j.marpetgeo.2021.105065

    [87]

    Youslf M H, Abass H H, Selim M S, et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Engineering, 1991, 6(1):69-76. doi: 10.2118/18320-PA

    [88]

    Sun X F, Mohanty K K. Kinetic simulation of methane hydrate formation and dissociation in porous media[J]. Chemical Engineering Science, 2006, 61(11):3476-3495. doi: 10.1016/j.ces.2005.12.017

    [89]

    Kim H C, Bishnoi P R, Heidemann R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7):1645-1653. doi: 10.1016/0009-2509(87)80169-0

    [90]

    Lei L, Seol Y, Choi J H, et al. Pore habit of methane hydrate and its evolution in sediment matrix – Laboratory visualization with phase-contrast micro-CT[J]. Marine and Petroleum Geology, 2019, 104:451-467. doi: 10.1016/j.marpetgeo.2019.04.004

    [91]

    Wang D G, Wang C C, Li C F, et al. Effect of gas hydrate formation and decomposition on flow properties of fine-grained quartz sand sediments using X-ray CT based pore network model simulation[J]. Fuel, 2018, 226: 516-526.

    [92]

    Liu L L, Zhang Z, Li C F, et al. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic, mechanical, and electrical properties of hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103109.

    [93]

    Liu L L, Dai S, Ning F L, et al. Fractal characteristics of unsaturated sands − implications to relative permeability in hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2019, 66:11-17. doi: 10.1016/j.jngse.2019.03.019

    [94]

    Ji Y K, Kneafsey T J, Hou J, et al. Relative permeability of gas and water flow in hydrate-bearing porous media: a micro-scale study by lattice Boltzmann simulation[J]. Fuel, 2022, 321:124013. doi: 10.1016/j.fuel.2022.124013

    [95]

    Liu C L, Meng Q G, He X L, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine and Petroleum Geology, 2015, 61:14-21. doi: 10.1016/j.marpetgeo.2014.11.006

    [96]

    Sun J Y, Li C F, Hao X L, et al. Study of the surface morphology of gas hydrate[J]. Journal of Ocean University of China, 2020, 19(2):331-338. doi: 10.1007/s11802-020-4039-7

    [97]

    李晨安, 李承峰, 刘昌岭, 等. X-CT法研究砂岩中甲烷水合物动态分布规律[J]. 核电子学与探测技术, 2018, 38(2):266-270 doi: 10.3969/j.issn.0258-0934.2018.02.023

    LI Chenan, LI Chengfeng, LIU Changling, et al. Research of methane hydrate distribution in sandstone's pore space during hydrate formation and dissociation based on X-CT[J]. Nuclear Electronics & Detection Technology, 2018, 38(2):266-270.] doi: 10.3969/j.issn.0258-0934.2018.02.023

    [98]

    李承峰, 胡高伟, 业渝光, 等. X射线计算机断层扫描测定沉积物中水合物微观分布[J]. 光电子·激光, 2013, 24(3):551-557

    LI Chengfeng, HU Gaowei, YE Yuguang, et al. Microscopic distribution of gas hydrate in sediment determined by X-ray computerized tomography[J]. Journal of Optoelectronics·Laser, 2013, 24(3):551-557.]

    [99]

    李承峰, 刘昌岭, 孟庆国, 等. 青海聚乎更水合物赋存区岩心微观孔隙、裂隙的微CT图像表征[J]. 现代地质, 2015, 29(5):1189-1193 doi: 10.3969/j.issn.1000-8527.2015.05.023

    LI Chengfeng, LIU Changling, MENG Qingguo, et al. CT image characterization of pores and fissures in rock core from Juhugeng gas hydrate area in Qinghai[J]. Geoscience, 2015, 29(5):1189-1193.] doi: 10.3969/j.issn.1000-8527.2015.05.023

    [100]

    刘昌岭, 孟庆国, 李承峰, 等. 南海北部陆坡天然气水合物及其赋存沉积物特征[J]. 地学前缘, 2017, 24(4):41-50

    LIU Changling, MENG Qingguo, LI Chengfeng, et al. Characterization of natural gas hydrate and its deposits recovered from the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4):41-50.]

    [101]

    Le T X, Bornert M, Aimedieu P, et al. An experimental investigation on methane hydrate morphologies and pore habits in sandy sediment using synchrotron X-ray computed tomography[J]. Marine and Petroleum Geology, 2020, 122:104646. doi: 10.1016/j.marpetgeo.2020.104646

    [102]

    Li R, Zhou Y F, Zhan W B, et al. Pore-scale modelling of elastic properties in hydrate-bearing sediments using 4-D synchrotron radiation imaging[J]. Marine and Petroleum Geology, 2022, 145:105864. doi: 10.1016/j.marpetgeo.2022.105864

    [103]

    Sahoo S K, Madhusudhan B N, Marín-Moreno H, et al. Laboratory insights into the effect of sediment-hosted methane hydrate morphology on elastic wave velocity from time-lapse 4-D synchrotron X-ray computed tomography[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(11):4502-4521. doi: 10.1029/2018GC007710

    [104]

    Pefoute E, Martin-Gondre L, Ollivier J, et al. Modeling the THF clathrate hydrate dynamics by combining molecular dynamics and quasi-elastic neutron scattering[J]. Chemical Physics, 2017, 496:24-34. doi: 10.1016/j.chemphys.2017.09.006

    [105]

    Brant Carvalho P H B, Mace A, Bull C L, et al. Elucidation of the pressure induced amorphization of tetrahydrofuran clathrate hydrate[J]. The Journal of Chemical Physics, 2019, 150(20):204506.

    [106]

    Wille G, Bourrat X, Maubec N, et al. Raman-in-SEM, a multimodal and multiscale analytical tool: performance for materials and expertise[J]. Micron, 2014, 67:50-64. doi: 10.1016/j.micron.2014.06.008

    [107]

    Li G, Yang Z R, Pei Z G, et al. Single-particle analysis of micro/nanoplastics by SEM-Raman technique[J]. Talanta, 2022, 249:123701. doi: 10.1016/j.talanta.2022.123701

    [108]

    Wille G, Lahondere D, Schmidt U, et al. Coupling SEM-EDS and confocal Raman-in-SEM imaging: a new method for identification and 3D morphology of asbestos-like fibers in a mineral matrix[J]. Journal of Hazardous Materials, 2019, 374:447-458. doi: 10.1016/j.jhazmat.2019.04.012

    [109]

    Yilmaz H, Ahmed S, Rodriguez J D, et al. Scanning electron-Raman cryomicroscopy for characterization of nanoparticle-albumin drug products[J]. Analytical Chemistry, 2023, 95(5):2633-2638. doi: 10.1021/acs.analchem.2c03826

    [110]

    Zhang Z C, Kusalik P G, Guo G J. Bridging solution properties to gas hydrate nucleation through guest dynamics[J]. Physical Chemistry Chemical Physics, 2018, 20(38):24535-24538. doi: 10.1039/C8CP04466J

    [111]

    Zhang Z C, Liu C J, Walsh M R, et al. Effects of ensembles on methane hydrate nucleation kinetics[J]. Physical Chemistry Chemical Physics, 2016, 18(23):15602-15608. doi: 10.1039/C6CP02171A

    [112]

    Pan M D, Luzi-Helbing M, Schicks J M. Heterogeneous and coexisting hydrate phases: formation under natural and laboratory conditions[J]. Energy & Fuels, 2022, 36(18):10489-10503.

    [113]

    Linga P, Kumar R, Lee J D, et al. A new apparatus to enhance the rate of gas hydrate formation: application to capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2010, 4(4):630-637. doi: 10.1016/j.ijggc.2009.12.014

    [114]

    Wang X L, Zhang F Y, Lipiński W. Research progress and challenges in hydrate-based carbon dioxide capture applications[J]. Applied Energy, 2020, 269:114928. doi: 10.1016/j.apenergy.2020.114928

  • 加载中

(8)

(1)

计量
  • 文章访问数:  146
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-10-23
修回日期:  2024-01-29
刊出日期:  2024-06-28

目录