深海重要矿产资源开发研究进展

李鑫海, 孙治雷, 曹红, 耿威, 张喜林, 翟滨, 张现荣, 徐思南, 张栋, 周渝程, 吕泰衡, 李世兴, 黄威. 深海重要矿产资源开发研究进展[J]. 海洋地质与第四纪地质, 2024, 44(3): 160-172. doi: 10.16562/j.cnki.0256-1492.2023122901
引用本文: 李鑫海, 孙治雷, 曹红, 耿威, 张喜林, 翟滨, 张现荣, 徐思南, 张栋, 周渝程, 吕泰衡, 李世兴, 黄威. 深海重要矿产资源开发研究进展[J]. 海洋地质与第四纪地质, 2024, 44(3): 160-172. doi: 10.16562/j.cnki.0256-1492.2023122901
LI Xinhai, SUN Zhilei, CAO Hong, GENG Wei, ZHANG Xilin, ZHAI Bin, ZHANG Xianrong, XU Sinan, ZHANG Dong, ZHOU Yucheng, LV Taiheng, LI Shixing, HUANG Wei. Research progress on exploitation of key deep-sea mineral resources[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 160-172. doi: 10.16562/j.cnki.0256-1492.2023122901
Citation: LI Xinhai, SUN Zhilei, CAO Hong, GENG Wei, ZHANG Xilin, ZHAI Bin, ZHANG Xianrong, XU Sinan, ZHANG Dong, ZHOU Yucheng, LV Taiheng, LI Shixing, HUANG Wei. Research progress on exploitation of key deep-sea mineral resources[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 160-172. doi: 10.16562/j.cnki.0256-1492.2023122901

深海重要矿产资源开发研究进展

  • 基金项目: 国家自然科学基金“海洋甲烷拦截带对冷泉流体的消耗研究:来自南海东沙海域的观测与研究”(42176057);山东省自然科学基金“冲绳海槽冷泉-热液流体溶解碳源/汇效应及对深海碳循环的影响”(ZR2021MD049);崂山实验室科技创新项目课题“适于海底水合物资源探测的爬行车作业平台研制”(LSKJ202203504)
详细信息
    作者简介: 李鑫海(1997—),男,硕士生,主要从事海洋地球化学方面的研究工作,E-mail:xinhai_li0609@163.com
    通讯作者: 孙治雷(1975—),男,博士,研究员,主要从事深海矿产资源调查评价和开发技术研究工作,E-mail:zhileisun@yeah.net
  • 中图分类号: P736

Research progress on exploitation of key deep-sea mineral resources

More Information
  • 深海蕴藏了丰富的能源与矿产资源,包括多金属结核、多金属硫化物、富钴结壳、深海稀土、天然气水合物等,是人类社会未来可持续发展的重要储备。当前,社会迅猛发展对能源和关键矿产资源的需求持续增长,引发了又一轮深海矿产资源开发热潮。全球范围内,已发现的深海矿产资源主要集中于太平洋、大西洋和印度洋的国际海底区域,以及沿海国家专属经济区内的海底。与陆地矿床相比,深海矿床具有品位高、种类多、开采地点远离居民生活区、且易于运输转移的优势,但采矿又势必会影响海洋生物生存环境,破坏深海生态系统稳定性。如不加强对环境影响的评估和开采技术的研究,并制定相关的法律法规,未来的深海采矿对海洋环境的破坏将无法估量。鉴于此,本文从深海典型矿产资源开采现状、开采技术研究进展以及对深海生态系统影响等方面进行了系统梳理,并对相关制约因素进行了讨论并提出合理性建议,以期为未来深海采矿技术方案的制定提供有益借鉴。

  • 加载中
  • 图 1  国际深海底采矿勘探合同和国家[21]

    Figure 1. 

    图 2  矿产资源开采模式图[2]

    Figure 2. 

    图 3  国外采矿车[36, 43]

    Figure 3. 

    图 4  中国采矿车[60]

    Figure 4. 

    图 5  深海热液丘金属硫化物种植示意图[61]

    Figure 5. 

    图 6  深海采矿对海洋生物的影响[70]

    Figure 6. 

  • [1]

    Danovaro R, Snelgrove P V R, Tyler P. Challenging the paradigms of deep-sea ecology[J]. Trends in Ecology & Evolution, 2014, 29(8):465-475.

    [2]

    Miller K A, Thompson K F, Johnston P, et al. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps[J]. Frontiers in Marine Science, 2018, 4:418. doi: 10.3389/fmars.2017.00418

    [3]

    宋宪仓, 杜君峰, 王树青, 等. 海洋科学装备研究进展与发展建议[J]. 中国工程科学, 2020, 22(6):76-83 doi: 10.15302/J-SSCAE-2020.06.010

    SONG Xiancang, DU Junfeng, WANG Shuqing, et al. Research progress of marine scientific equipment and development recommendations in China[J]. Strategic Study of CAE, 2020, 22(6):76-83.] doi: 10.15302/J-SSCAE-2020.06.010

    [4]

    刘少军, 刘畅, 戴瑜. 深海采矿装备研发的现状与进展[J]. 机械工程学报, 2014, 50(2):8-18 doi: 10.3901/JME.2014.02.008

    LIU Shaojun, LIU Chang, DAI Yu. Status and progress on researches and developments of deep ocean mining equipments[J]. Journal of Mechanical Engineering, 2014, 50(2):8-18.] doi: 10.3901/JME.2014.02.008

    [5]

    王晖, 王毓明, 解文丽. 话战略金砖之稀土[J]. 广东化工, 2022, 49(14):69-71,100 doi: 10.3969/j.issn.1007-1865.2022.14.024

    WANG Hui, WANG Yuming, XIE Wenli. Talk about rare earth: strategic bricks[J]. Guangdong Chemical Industry, 2022, 49(14):69-71,100.] doi: 10.3969/j.issn.1007-1865.2022.14.024

    [6]

    祝有海, 张永勤, 方慧, 等. 中国陆域天然气水合物调查研究主要进展[J]. 中国地质调查, 2020, 7(4):1-9

    ZHU Youhai, ZHANG Yongqin, FANG Hui, et al. Main progress of investigation and test production of natural gas hydrate in permafrost of China[J]. Geological Survey of China, 2020, 7(4):1-9.]

    [7]

    Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51:1-14. doi: 10.1016/j.oregeorev.2012.12.001

    [8]

    Yamazaki T. Past, present, and future of deep-sea mining[J]. Journal of MMIJ, 2015, 131(12):592-596. doi: 10.2473/journalofmmij.131.592

    [9]

    Jamieson J W, Hannington M D, Petersen S. Seafloor massive sulfide resources[M]//Carlton J, Jukes P, Choo Y S. Encyclopedia of Maritime and Offshore Engineering. Chichester: John Wiley & Sons, 2017: 1-10.

    [10]

    曹亮, 杨振, 廖时理, 等. 现代海底多金属硫化物矿床控矿因素分析研究进展[J]. 现代矿业, 2019, 35(7):6-11,42

    CAO Liang, YANG Zhen, LIAO Shili, et al. Analysis on ore-controlling factors of submarine hydrothermal polymetallic sulphide deposits[J]. Modern Mining, 2019, 35(7):6-11,42.]

    [11]

    沈芳, 韩喜球, 李洪林, 等. 海底多金属硫化物资源预测: 方法与思考[J]. 中国有色金属学报, 2021, 31(10):2682-2695

    SHEN Fang, HAN Xiqiu, LI Honglin, et al. Prediction of seafloor polymetallic sulfide resources: methods and consideration[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10):2682-2695.]

    [12]

    Hein J R. Co-rich manganese crusts[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of Marine Geosciences. Dordrecht: Springer, 2014: 1-7.

    [13]

    Amon D J, Gollner S, Morato T, et al. Assessment of scientific gaps related to the effective environmental management of deep-seabed mining[J]. Marine Policy, 2022, 138:105006. doi: 10.1016/j.marpol.2022.105006

    [14]

    于莹, 刘大海. 日本深海稀土研究开发最新动态及启示[J]. 中国国土资源经济, 2019, 32(9):46-51

    YU Ying, LIU Dahai. The latest dynamics and enlightenment of research and development of deep-sea rare-earth in Japan[J]. Natural Resource Economics of China, 2019, 32(9):46-51.]

    [15]

    Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2):173-187. doi: 10.1029/93RG00268

    [16]

    Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162:1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    [17]

    付强, 王国荣, 周守为, 等. 海洋天然气水合物开采技术与装备发展研究[J]. 中国工程科学, 2020, 22(6):32-39 doi: 10.15302/J-SSCAE-2020.06.005

    FU Qiang, WANG Guorong, ZHOU Shouwei, et al. Development of marine natural gas hydrate mining technology and equipment[J]. Strategic Study of CAE, 2020, 22(6):32-39.] doi: 10.15302/J-SSCAE-2020.06.005

    [18]

    周平, 杨宗喜, 郑人瑞, 等. 深海矿产资源勘查开发进展、挑战与前景[J]. 国土资源情报, 2016(11):27-32

    ZHOU Ping, YANG Zongxi, ZHENG Renrui, et al. Development progress, challenge and prospect of mineral resources exploration and exploitation in deep sea[J]. Land and Resources Information, 2016(11):27-32.]

    [19]

    Sparenberg O. A historical perspective on deep-sea mining for manganese nodules, 1965–2019[J]. The Extractive Industries and Society, 2019, 6(3):842-854. doi: 10.1016/j.exis.2019.04.001

    [20]

    沈义俊, 陈敏芳, 杜燕连, 等. 深海矿物资源开发系统关键力学问题及技术挑战[J]. 力学与实践, 2022, 44(5):1005-1020

    SHEN Yijun, CHEN Minfang, DU Hailian, et al. Key mechanical issues and technical challenges of deep-sea mining development system[J]. Mechanics in Engineering, 2022, 44(5):1005-1020.]

    [21]

    Levin L A, Amon D J, Lily H. Challenges to the sustainability of deep-seabed mining[J]. Nature Sustainability, 2020, 3(10):784-794. doi: 10.1038/s41893-020-0558-x

    [22]

    杨建民, 刘磊, 吕海宁, 等. 我国深海矿产资源开发装备研发现状与展望[J]. 中国工程科学, 2020, 22(6):1-9 doi: 10.15302/J-SSCAE-2020.06.001

    YANG Jianmin, LIU Lei, LYU Haining, et al. Deep-sea Mining equipment in China: current status and prospect[J]. Strategic Study of CAE, 2020, 22(6):1-9.] doi: 10.15302/J-SSCAE-2020.06.001

    [23]

    李家彪, 王叶剑, 刘磊, 等. 深海矿产资源开发技术发展现状与展望[J]. 前瞻科技, 2022, 1(2):92-102 doi: 10.3981/j.issn.2097-0781.2022.02.007

    LI Jiabiao, WANG Yejian, LIU Lei, et al. Current status and prospect of deep-sea mining technology[J]. Science and Technology Foresight, 2022, 1(2):92-102.] doi: 10.3981/j.issn.2097-0781.2022.02.007

    [24]

    贾凌霄, 马冰, 于洋, 等. 基于SWOT分析的深海采矿发展策略研究[J]. 中国矿业, 2021, 30(7):15-22

    JIA Lingxiao, MA Bing, YU Yang, et al. Research on deep sea mining development strategy based on SWOT analysis[J]. China Mining Magazine, 2021, 30(7):15-22.]

    [25]

    Heinrich L, Koschinsky A. Deep-sea mining: can it contribute to sustainable development?[M]//Ekau W, Hornidge A K. Transitioning to Sustainable Life Below Water. 2021: 109.

    [26]

    Japan Oil, Gas & Metals National Corporation. JOGMEC conducts world’s first successful excavation of cobalt-rich seabed in the deep ocean[EB/OL]. 2020[2023-06-20]. http://www.jogmec.go.jp/english/news/release/news_01_000033.html.

    [27]

    Konno Y, Fujii T, Sato A, et al. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: toward future commercial production[J]. Energy & Fuels, 2017, 31(3):2607-2616.

    [28]

    Yamamoto K, Wang X X, Tamaki M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances, 2019, 9(45):25987-26013. doi: 10.1039/C9RA00755E

    [29]

    周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4):1-8

    ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area[J]. China Offshore Oil and Gas, 2017, 29(4):1-8.]

    [30]

    叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3):557-568.]

    [31]

    Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8):535-539. doi: 10.1038/ngeo1185

    [32]

    石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报., 2021, 40(2):195-208

    SHI Xuefa, BI Dongjie, HUANG Mu, et al. Distribution and metallogenesis of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(2):195-208.]

    [33]

    童波, 刘学勤, 任铁. 新型深海矿产开发模式的探讨[J]. 船舶, 2021, 32(3):1-7

    TONG Bo, LIU Xueqin, REN Tie. Discussion on development mode of new deep-sea mineral[J]. Ship & Boat, 2021, 32(3):1-7.]

    [34]

    邹丽, 孙佳昭, 孙哲, 等. 我国深海矿产资源开发核心技术研究现状与展望[J]. 哈尔滨工程大学学报, 2023, 44(5):708-716

    ZOU Li, SUN Jiazhao, SUN Zhe, et al. Deep-sea mining core technology in China: current situation and prospects[J]. Journal of Harbin Engineering University, 2023, 44(5):708-716.]

    [35]

    徐俊杰, 孔德博, 吴鸿云, 等. 深海多金属结核集矿机铝合金履齿结构设计与分析[J]. 采矿技术, 2019, 19(6):116-118,129

    XU Junjie, KONG Debo, WU Hongyun, et al. Design and analysis of aluminum alloy shoe structure of deep-sea polymetallic nodule collector[J]. Mining Technology, 2019, 19(6):116-118,129.]

    [36]

    Yoon S M, Hong S, Park S J, et al. Track velocity control of crawler type underwater mining robot through shallow-water test[J]. Journal of Mechanical Science and Technology, 2012, 26(10):3291-3298. doi: 10.1007/s12206-012-0810-2

    [37]

    Hong S, Kimg H W, Choi J S, et al. A self-propelled deep-seabed miner and lessons from shallow water tests[C]//Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai: ASME, 2010: 75-86.

    [38]

    Hong S, Kim H W, Yeu T, et al. Technologies for safe and sustainable mining of deep-seabed minerals[M]//Sharma R. Environmental Issues of Deep-Sea Mining: Impacts, Consequences and Policy Perspectives. Cham: Springer, 2019: 95-143.

    [39]

    Cho S G, Park S, Oh J, et al. Design optimization of deep-seabed pilot miner system with coupled relations between constraints[J]. Journal of Terramechanics, 2019, 83:25-34. doi: 10.1016/j.jterra.2019.01.003

    [40]

    Kim S, Cho S G, Lee M, et al. Reliability-based design optimization of a pick-up device of a manganese nodule pilot mining robot using the Coandă effect[J]. Journal of Mechanical Science and Technology, 2019, 33(8):3665-3672. doi: 10.1007/s12206-019-0707-1

    [41]

    康娅娟, 刘少军. 深海多金属结核开采技术发展历程及展望[J]. 中国有色金属学报, 2021, 31(10):2848-2860

    KANG Yajuan, LIU Shaojun. Development history and prospect of deep sea polymetallic nodules mining technology[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10):2848-2860.]

    [42]

    Cheng Y R, Dai Y, Zhang Y Y, et al. Status and prospects of the development of deep-sea polymetallic nodule-collecting technology[J]. Sustainability, 2023, 15(5):4572. doi: 10.3390/su15054572

    [43]

    Global Sea Mineral (GSR). Metal-rich nodules collected from seabed during important technology trial[EB/OL]. 2021[2023-06-20].https://deme-gsr.com/news/metal-rich-nodules-collected-from-seabed-during-important-technology-trial/.

    [44]

    Xie C, Wang L, Yang N, et al. A compact design of underwater mining vehicle for the cobalt-rich crust with general support vessel part A: prototype and tests[J]. Journal of Marine Science and Engineering, 2022, 10(2):135. doi: 10.3390/jmse10020135

    [45]

    Larson D A, Tandanand S, Boucher M L, et al. Physical properties and mechanical cutting characteristics of cobalt-rich managanese crusts[R]. Spokane: US Department of the Interior, 1987.

    [46]

    Halkyard J. Technology for mining cobalt rich manganese crusts from seamounts[C]//Proceedings of the OCEANS'85-Ocean Engineering and the Environment. San Diego: IEEE, 1985: 352-374.

    [47]

    江敏, 吴鸿云, 陆新江, 等. 基于螺旋截齿切削技术的深海富钴结壳切削参数计算与试验研究[J]. 矿业研究与开发, 2021, 41(11):162-167

    JIANG Min, WU Hongye, LU Xinjiang, et al. Experimental research and calculation on cutting parameters of the deep-sea cobalt-rich crust based on helical cutting technology[J]. Mining R& D, 2021, 41(11):162-167.]

    [48]

    Aoshika K, Zaitsu M. An experimental study of cutting the cobalt-rich manganese crusts[J]. NKK Technical Review, 1990(59):61-67.

    [49]

    方陵生. 海底采矿机器人热液喷口挖金: 海底采矿机器人测试将在2016年揭开序幕[J]. 世界科学, 2016(3):23-24

    FANG Lingsheng. Seabed Mining robot Hydrothermal vents for gold - Seabed mining robot testing will begin in 2016[J]. World Science, 2016(3):23-24.]

    [50]

    李艳, 梁科森, 李皓. 深海多金属硫化物开采技术[J]. 中国有色金属学报, 2021, 31(10):2889-2901

    LI Yan, LIANG Kesen, LI Hao. Mining technology of deep-sea polymetallic sulfide[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10):2889-2901.]

    [51]

    Hu Q, Li Z F, Zhai X Y, et al. Development of hydraulic lifting system of deep-sea mineral resources[J]. Minerals, 2022, 12(10):1319. doi: 10.3390/min12101319

    [52]

    Kang Y J, Liu S J. The development history and latest progress of deep-sea polymetallic nodule mining technology[J]. Minerals, 2021, 11(10):1132. doi: 10.3390/min11101132

    [53]

    肖业祥, 杨凌波, 曹蕾, 等. 海洋矿产资源分布及深海扬矿研究进展[J]. 排灌机械工程学报, 2014, 32(4):319-326

    XIAO Yexiang, YANG Lingbo, CAO Lei, et al. Distribution of marine mineral resource and advances of deep-sea lifting pump technology[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(4):319-326.]

    [54]

    Kuntz G. The technical advantages of submersible motor pumps in deep sea technology and the delivery of manganese nodules[C]//Proceedings of the Offshore Technology Conference. Houston: OTC, 1979: OTC-3367-MS.

    [55]

    Choi J S, Hong S, Chi S B, et al. Probability distribution for the shear strength of seafloor sediment in the KR5 area for the development of manganese nodule miner[J]. Ocean Engineering, 2011, 38(17-18):2033-2041. doi: 10.1016/j.oceaneng.2011.09.011

    [56]

    Ramesh N R, Thirumurugan K, Raphael D C, et al. Development and subsea testing of polymetallic nodule crusher for underwater mining machine[J]. Marine Technology Society Journal, 2021, 55(6):65-72. doi: 10.4031/MTSJ.55.6.6

    [57]

    阳宁, 夏建新. 国际海底资源开发技术及其发展趋势[J]. 矿冶工程, 2000(1):1-4

    YANG Ning, XIA Jianxin. Development techniques for international sea-floor resources and their future trend[J]. Mining and Metallurgical Engineering, 2000(1):1-4.]

    [58]

    阳宁, 陈光国. 深海矿产资源开采技术的现状综述[J]. 矿山机械, 2010, 38(10):4-9

    YANG Ning, CHEN Guangguo. Status quo and development trendency of deep sea minerals mining technology[J]. Mining & Processing Equipment, 2010, 38(10):4-9.]

    [59]

    陈秉正. “鲲龙500”采矿车履带行驶机构的研制与试验研究[J]. 采矿技术, 2019, 19(5):125-128

    CHEN Bingzheng. Development and experimental study of track driving mechanism of "Kunlong 500" mining truck[J]. Mining Technology, 2019, 19(5):125-128.]

    [60]

    长沙矿冶研究院有限责任公司. 我国首次海底多金属结核集矿系统500米海试通过专家验收[EB/OL]. (2018-09-30)[2023-07-31]. http://www.crimm.com.cn/xwzx/qyxw/202303/t20230315_298514.html

    Changsha Research Institute of Mining and Metallurgy Co. , LTD. China's first submarine polymetallic nodule ore collection system 500 meters sea test passed the acceptance of experts[EB/OL]. (2018-09-30)[2023-07-31]. http://www.crimm.com.cn/xwzx/qyxw/202303/t20230315_298514.html.]

    [61]

    孙治雷, 尚鲁宁, 曹红, 等. 深海热液金属硫化物矿床原位种植系统: 中国, 107100627A[P]. 2017-08-29

    SUN Zhilei, SHANG Luning, CAO Hong, et al. In situ planting system of deep-sea hydrothermal metal sulfide deposit: CN, 107100627A[P]. 2017-08-29.]

    [62]

    唐达生, 阳宁, 金星. 深海粗颗粒矿石垂直管道水力提升技术[J]. 矿冶工程, 2013, 33(5):1-8

    TANG Dasheng, YANG Ning, JING Xing. Hydraulic lifting technique with vertical pipe for deep-sea coarse mineral particles[J]. Mining and Metallurgical Engineering, 2013, 33(5):1-8.]

    [63]

    Wedding L M, Reiter S M, Smith C R, et al. Managing mining of the deep seabed[J]. Science, 2015, 349(6244):144-145. doi: 10.1126/science.aac6647

    [64]

    Gilbert N. Deep-sea mining could soon be approved - how bad is it?[J]. Nature, 2023, 619(7971):684. doi: 10.1038/d41586-023-02290-5

    [65]

    Rabone M, Wiethase J H, Simon-Lledó E, et al. How many metazoan species live in the world's largest mineral exploration region?[J]. Current Biology, 2023, 33(12): 2383-2396. e5.

    [66]

    Galkin S V. Megafauna associated with hydrothermal vents in the Manus Back-Arc Basin (Bismarck Sea)[J]. Marine Geology, 1997, 142(1-4):197-206. doi: 10.1016/S0025-3227(97)00051-0

    [67]

    Boschen R E, Rowden A A, Clark M R, et al. Megabenthic assemblage structure on three New Zealand seamounts: implications for seafloor massive sulfide mining[J]. Marine Ecology Progress Series, 2015, 523:1-14. doi: 10.3354/meps11239

    [68]

    Morato T, Miller P I, Dunn D C, et al. A perspective on the importance of oceanic fronts in promoting aggregation of visitors to seamounts[J]. Fish and Fisheries, 2016, 17(4):1227-1233. doi: 10.1111/faf.12126

    [69]

    Fisher C R, MacDonald I R, Sassen R, et al. Methane ice worms: Hesiocaeca methanicola colonizing fossil fuel reserves[J]. Naturwissenschaften, 2000, 87(4):184-187. doi: 10.1007/s001140050700

    [70]

    Drazen J C, Smith C R, Gjerde K M, et al. Midwater ecosystems must be considered when evaluating environmental risks of deep-sea mining[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(30):17455-17460.

    [71]

    Von Stackelberg U. Growth history of manganese nodules and crusts of the Peru Basin[J]. Geological Society, London, Special Publications, 1997, 119(1):153-176. doi: 10.1144/GSL.SP.1997.119.01.11

    [72]

    Vanreusel A, Hilario A, Ribeiro P A, et al. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna[J]. Scientific Reports, 2016, 6:26808. doi: 10.1038/srep26808

    [73]

    Miljutin D M, Miljutina M A, Arbizu P M, et al. Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific)[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2011, 58(8):885-897. doi: 10.1016/j.dsr.2011.06.003

    [74]

    Washburn T W, Simon-Lledó E, Soong G Y, et al. Seamount mining test provides evidence of ecological impacts beyond deposition[J]. Current Biology, 2023, 33(14): 3065-3071. e3.

    [75]

    Nakajima R, Yamamoto H, Kawagucci S, et al. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough[J]. PLoS One, 2015, 10(4):e0123095. doi: 10.1371/journal.pone.0123095

    [76]

    Levin L A, Mengerink K, Gjerde K M, et al. Defining “serious harm” to the marine environment in the context of deep-seabed mining[J]. Marine Policy, 2016, 74:245-259. doi: 10.1016/j.marpol.2016.09.032

    [77]

    Ouillon R, Muñoz-Royo C, Alford M H, et al. Advection - diffusion settling of deep-sea mining sediment plumes. Part 2. Collector plumes[J]. Flow, 2022, 2:E23. doi: 10.1017/flo.2022.19

    [78]

    Ouillon R, Muñoz-Royo C, Alford M H, et al. Advection-diffusion-settling of deep-sea mining sediment plumes. Part 1: Midwater plumes[J]. Flow, 2022, 2:E22. doi: 10.1017/flo.2022.20

    [79]

    Boschen R E, Rowden A A, Clark M R, et al. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies[J]. Ocean & Coastal Management, 2013, 84:54-67.

    [80]

    Van Dover C L. Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: a review[J]. Marine Environmental Research, 2014, 102:59-72. doi: 10.1016/j.marenvres.2014.03.008

    [81]

    Gollner S, Kaiser S, Menzel L, et al. Resilience of benthic deep-sea fauna to mining activities[J]. Marine Environmental Research, 2017, 129:76-101. doi: 10.1016/j.marenvres.2017.04.010

    [82]

    Muñoz-Royo C, Peacock T, Alford M H, et al. Extent of impact of deep-sea nodule mining midwater plumes is influenced by sediment loading, turbulence and thresholds[J]. Communications Earth & Environment, 2021, 2(1):148.

    [83]

    Amon D J, Palacios-Abrantes J, Drazen J C, et al. Climate change to drive increasing overlap between Pacific tuna fisheries and emerging deep-sea mining industry[J]. npj Ocean Sustainability, 2023, 2(1):9. doi: 10.1038/s44183-023-00016-8

    [84]

    Gomez C, Lawson J W, Wright A J, et al. A systematic review on the behavioural responses of wild marine mammals to noise: the disparity between science and policy[J]. Canadian Journal of Zoology, 2016, 94(12):801-819. doi: 10.1139/cjz-2016-0098

    [85]

    Nedelec S L, Radford A N, Pearl L, et al. Motorboat noise impacts parental behaviour and offspring survival in a reef fish[J]. Proceedings of the Royal Society B:Biological Sciences, 2017, 284(1856):20170143. doi: 10.1098/rspb.2017.0143

    [86]

    Herring P J, Gaten E, Shelton P M J. Are vent shrimps blinded by science?[J]. Nature, 1999, 398(6723):116. doi: 10.1038/18142

    [87]

    Singh P A. The two-year deadline to complete the International Seabed Authority’s Mining Code: key outstanding matters that still need to be resolved[J]. Marine Policy, 2021, 134:104804. doi: 10.1016/j.marpol.2021.104804

    [88]

    ISA. The 28th session of the international seabed authority[EB/OL]. 2023[2023-07-31].https://www.isa.org.jm/sessions/28th-session-2023/.

  • 加载中

(6)

计量
  • 文章访问数:  342
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2023-12-29
修回日期:  2024-03-14
刊出日期:  2024-06-28

目录