高压下深海碳循环的过程及其对生命活动的影响

刘亮霆, 肖湘. 2021. 高压下深海碳循环的过程及其对生命活动的影响. 中国地质调查, 8(4): 66-78. doi: 10.19388/j.zgdzdc.2021.04.07
引用本文: 刘亮霆, 肖湘. 2021. 高压下深海碳循环的过程及其对生命活动的影响. 中国地质调查, 8(4): 66-78. doi: 10.19388/j.zgdzdc.2021.04.07
LIU Liangting, XIAO Xiang. 2021. Deep-sea carbon cycle under high pressure and its impacts on life activities. Geological Survey of China, 8(4): 66-78. doi: 10.19388/j.zgdzdc.2021.04.07
Citation: LIU Liangting, XIAO Xiang. 2021. Deep-sea carbon cycle under high pressure and its impacts on life activities. Geological Survey of China, 8(4): 66-78. doi: 10.19388/j.zgdzdc.2021.04.07

高压下深海碳循环的过程及其对生命活动的影响

  • 基金项目:

    中国博士后科学基金“深海氨氧化古菌的代谢特性及环境适应机制(编号: 2020M681282)”项目资助

详细信息
    作者简介: 刘亮霆(1992—),男,助理研究员,主要从事生物地球化学循环研究。Email: l_lightning@sjtu.edu.cn。
    通讯作者: 肖湘(1968—),男,教授,主要从事深海微生物研究。Email: zjxiao2018@sjtu.edu.cn。
  • 中图分类号: X14;P736;P593;P736

Deep-sea carbon cycle under high pressure and its impacts on life activities

More Information
    Corresponding author: XIAO Xiang
  • 目前约25%化石燃料来源的CO2被海洋吸收,缓解了人类活动对气候变化的影响。海洋通过多个概念的碳泵将大气中的CO2输送到深海。深海高压和低温的特点有利于CO2溶解,目前已经储存了相当于大气含量50倍的无机碳,另外,深海沉积物中还储存有大量甲烷水合物。认识深海中的碳循环过程,对于保护海洋固碳能力、开发固碳潜力有重要意义。总结了国内外在海洋碳库、碳输送研究方面的进展,重点讨论了深海C元素转化循环的过程以及高压对生命活动的影响。微生物驱动了深海碳循环,大部分浮游植物所包含的有机碳在沉降过程中被微生物矿化成CO2以及转化为难降解的有机碳,使深海成为巨大的、长周转时间的有机碳库; 高压能提高古菌甲烷厌氧氧化的活性,提升屏蔽海底甲烷释放的能力,同时,高压下氧化甲烷的过程中不仅产生碳酸氢盐,还产生可支持异养生物的乙酸,因此,全球甲烷厌氧氧化的通量可能被低估; 高压下细胞代谢额外产生的氨,可作为氨氧化古菌固定无机碳的潜在能量来源。总之,研究现在以及未来的人类活动对深海碳循环过程的影响以及环境效应,评估应用深海作为地球工程技术平台封存CO2的可能性,都迫切需要加深对碳循环在内的深海元素循环的认识。
  • 加载中
  • [1]

    IPCC.Climate Change 2014:Synthesis Report[R].Geneva,Switzerland:IPCC,2014.

    [2]

    Friedlingstein P,O’Sullivan M,Jones M W,et al.Global carbon budget 2020[J].Earth Syst Sci Data,2020,12(4):3269-3340.

    [3]

    Myhre G,Shindell D,Bréon F M,et al.Anthropogenic and Natural Radiative Forcing[C]//Climate Change 2013:the Physical Science Basis:Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013:659-740.

    [4]

    Tans P.Trends in Atmospheric Carbon Dioxide[EB/OL].[2021-06-28].https://gml.noaa.gov/ccgg/trends/.

    [5]

    MacFarling M C,Etheridge D,Trudinger C,et al.Law dome CO2,CH4 and N2O ice core records extended to 2000 years BP[J].Geophys Res Lett,2006,33(14):L14810.

    [6]

    Lüthi D,Le Floch M,Bereiter B,et al.High-resolution carbon dioxide concentration record 650 000-800 000 years before pre-sent[J].Nature,2008,453(7193):379-382.

    [7]

    Dlugokencky E.Trends in Atmospheric Methane[EB/OL].[2021-06-28].https://gml.noaa.gov/ccgg/trends_ch4/.

    [8]

    Falkowski P,Scholes R J,Boyle E,et al.The global carbon cycle:A test of our knowledge of earth as a system[J].Science,2000,290(5490):291-296.

    [9]

    Atwood T B,Witt A,Mayorga J,et al.Global patterns in marine sediment carbon stocks[J].Front Mar Sci,2020,7:165.

    [10]

    Lee T R,Wood W T,Phrampus B J.A machine learning (kNN) approach to predicting global seafloor total organic carbon[J].Global Biogeochem Cycles,2019,33(1):37-46.

    [11]

    Estes E R,Pockalny R,D’Hondt S,et al.Persistent organic matter in oxic subseafloor sediment[J].Nat Geosci,2019,12(2):126-131.

    [12]

    Bianchi T S,Schreiner K M,Smith R W,et al.Redox effects on organic matter storage in coastal sediments during the holocene:a biomarker/proxy perspective[J].Annu Rev Earth Planet Sci,2016,44:295-319.

    [13]

    Cicerone R J,Oremland R S.Biogeochemical aspects of atmospheric methane[J].Global Biogeochem Cycles,1988,2(4):299-327.

    [14]

    Archer D.Methane hydrate stability and anthropogenic climate change[J].Biogeosciences,2007,4(4):521-544.

    [15]

    Kvenvolden K A.Gas hydrates-geological perspective and global change[J].Rev Geophys,1993,31(2):173-187.

    [16]

    Kvenvolden K A.Methane hydrate in the global organic carbon cycle[J].Terra Nova,2002,14(5):302-306.

    [17]

    Kvenvolden K A.Methane hydrate---A major reservoir of carbon in the shallow geosphere?[J].Chem Geol,1988,71(1/2/3):41-51.

    [18]

    Chronopoulou P M,Shelley F,Pritchard W J,et al.Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone[J].ISME J,2017,11(6):1386-1399.

    [19]

    Schlesinger W H,Bernhardt E S.The oceans[M]//Schlesinger W H,Bernhardt E S.Biogeochemistry:An Analysis of Global Change.4th ed.Amsterdam:Elsevier,2020:361-432.

    [20]

    Skinner L C,Primeau F,Freeman E,et al.Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2[J].Nat Commun,2017,8:16010.

    [21]

    Rae J W B,Burke A,Robinson L F,et al.CO2 storage and release in the deep Southern Ocean on millennial to centennial timesca-les[J].Nature,2018,562(7728):569-573.

    [22]

    Feely R A,Sabine C L,Lee K,et al.Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J].Science,2004,305(5682):362-366.

    [23]

    Berner R A.A model for calcium,magnesium and sulfate in seawater over Phanerozoic time[J].Am J Sci,2004,304(5):438-453.

    [24]

    Ridgwell A,Zeebe R E.The role of the global carbonate cycle in the regulation and evolution of the Earth system[J].Earth Planet Sci Lett,2005,234(3/4):299-315.

    [25]

    Sulpis O,Boudreau B P,Mucci A,et al.Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2[J].Proc Natl Acad Sci USA,2018,115(46):11700-11705.

    [26]

    Berelson W M,Balch W M,Najjar R,et al.Relating estimates of CaCO3 production,export,and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor:A revised global carbonate budget[J].Global Biogeochem Cycles,2007,21(1):GB1024.

    [27]

    Behrenfeld M J,Falkowski P G.Photosynthetic rates derived from satellite-based chlorophyll concentration[J].Limnol Oceanogr,1997,42(1):1-20.

    [28]

    Quay P D,Peacock C,Björkman K,et al.Measuring primary production rates in the ocean:Enigmatic results between incubation and non-incubation methodsat Station ALOHA[J].Global Biogeochem Cycles,2010,24(3):GB3014.

    [29]

    Lee K.Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon[J].Limnol Oceanogr,2001,46(6):1287-1297.

    [30]

    Ridgwell A,Arndt S.Why dissolved organics matter:DOC in Ancient Oceans and Past Climate Change[M]//Hansell D A,Carlson C A.Biogeochemistry of Marine Dissolved Organic Matter.2nd ed.New York:Academic Press,2015:1-20

    [31]

    Garcia H E,Weathers K W,Paver C R,et al.World Ocean Atlas 2018,Volume 4:Dissolved Inorganic Nutrients (Phosphate,Nitrate and Nitrate+Nitrite,Silicate).A.mishonov technical editor[R].NOAA Atlas NESDIS 84,Silver Spring:U.S.Department of Commerce,National Oceanic and Atmospheric Administration,2019:35.

    [32]

    Hansell D A,Carlson C A,Repeta D J,et al.Dissolved organic matter in the ocean:a controversy stimulates new insights[J].Oceanography,2009,22(4):202-211.

    [33]

    焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应[J].中国科学:地球科学,2013,43(1):1-18.

    [34]

    Jiao N Z,Zhang C L,Li C,et al.Controlling mechanisms and climate effects of microbial carbon pump in the ocean[J].Sci Sin Terr,2013,43(1):1-18.

    [34]

    焦念志,汤凯,张瑶,等.海洋微型生物储碳过程与机制概论[J].微生物学通报,2013,40(1):71-86.

    [36]

    Jiao N Z,Tang K,Zhang Y,et al.Microbial processes and mechanisms in carbon sequestration in the ocean[J].Microbiol China,2013,40(1):71-86.

    [35]

    Jiao N Z,Cai R H,Zheng Q,et al.Unveiling the enigma of refractory carbon in the ocean[J].Natl Sci Rev,2018,5(4):459-463.

    [36]

    Koch B P,Dittmar T.From mass to structure:An aromaticity index for high-resolution mass data of natural organic matter[J].Ra-pid Commun Mass Spectrom,2006,20(5):926-932.

    [37]

    Medeiros P M,Seidel M,Powers L C,et al.Dissolved organic matter composition and photochemical transformations in the northern North Pacific Ocean[J].Geophys Res Lett,2015,42(3):863-870.

    [38]

    Legendre L,Rivkin R B,Weinbauer M G,et al.The microbial carbon pump concept:Potential biogeochemical significance in the globally changing ocean[J].Prog Oceanogr,2015,134:432-450.

    [39]

    Polimene L,Rivkin R B,Luo Y W,et al.Modelling marine DOC degradation time scales[J].Natl Sci Rev,2018,5(4):468-474.

    [40]

    Ruppel C D,Kessler J D.The interaction of climate change and methane hydrates[J].Rev Geophys,2017,55(1):126-168.

    [41]

    Reeburgh W S.Oceanic methane biogeochemistry[J].Chem Rev,2007,107(2):486-513.

    [42]

    Crémière A,Lepland A,Chand S,et al.Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet[J].Nat Commun,2016,7:11509.

    [43]

    Vielstädte L,Karstens J,Haeckel M,et al.Quantification of methane emissions at abandoned gas wells in the Central North Sea[J].Mar Pet Geol,2015,68:848-860.

    [44]

    Crespo-Medina M,Meile C D,Hunter K S,et al.The rise and fall of methanotrophy following a deepwater oil-well blow-out[J].Nat Geosci,2014,7(6):423-427.

    [45]

    Karl D M,Church M J,Dore J E,et al.Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation[J].Proc Natl Acad Sci USA,2012,109(6):1842-1849.

    [46]

    Arístegui J,Gasol J M,Duarte C M,et al.Microbial oceanography of the dark ocean’s pelagic realm[J].Limnol Oceanogr,2009,54(5):1501-1529.

    [47]

    Baltar F,Arístegui J,Gasol J M,et al.Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic[J].Limnol Oceanogr,2009,54(1):182-193.

    [48]

    Reinthaler T,Van Aken H M,Herndl G J.Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior[J].Deep Sea Res Part II Top Stud Oceanogr,2010,57(16):1572-1580.

    [49]

    Herndl G J,Reinthaler T,Teira E,et al.Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean[J].Appl Environ Microbiol,2005,71(5):2303-2309.

    [50]

    Reinthaler T,Van Aken H,Veth C,et al.Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin[J].Limnol Oceanogr,2006,51(3):1262-1273.

    [51]

    Salazar G,Cornejo-Castillo F M,Benítez-Barrios V,et al.Glo-bal diversity and biogeography of deep-sea pelagic prokaryo-tes[J].ISME J,2016,10(3):596-608.

    [52]

    Sul W J,Oliver T A,Ducklow H W,et al.Marine bacteria exhibit a bipolar distribution[J].Proc Natl Acad Sci USA,2013,110(6):2342-2347.

    [53]

    Petro C,Starnawski P,Schramm A,et al.Microbial community assembly in marine sediments[J].Aquat Microb Ecol,2017,79(3):177-195.

    [54]

    Ducklow H W,Steinberg D K,Buesseler K O.Upper ocean carbon export and the biological pump[J].Oceanography,2001,14(4):50-58.

    [55]

    Nagata T.Organic Matter-bacteria Interactions in Seawater[M]//Kirchman D L.Microbial Ecology of the Oceans.2nd ed.Hoboken:John Wiley & Sons,2008:207-241.

    [56]

    Long R A,Azam F.Antagonistic interactions among marine pela-gic bacteria[J].Appl Environ Microbiol,2001,67(11):4975-4983.

    [57]

    Gram L,Grossart H P,Schlingloff A,et al.Possible quorum sensing in marine snow bacteria:Production of acylated homoserine lactones by Roseobacter strains isolated from marine snow[J].Appl Environ Microbiol,2002,68(8):4111-4116.

    [58]

    Simon M,Grossart H P,Schweitzer B,et al.Microbial ecology of organic aggregates in aquatic ecosystems[J].Aquat Microb Ecol,2002,28(2):175-211.

    [59]

    Smith D C,Simon M,Alldredge A L,et al.Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution[J].Nature,1992,359(6391):139-142.

    [60]

    Borch N H,Kirchman D L.Protection of protein from bacterial degradation by submicron particles[J].Aquat Microb Ecol,1999,16(3):265-272.

    [61]

    Keil R G,Kirchman D L.Utilization of dissolved protein and amino acids in the northern Sargasso Sea[J].Aquat Microb Ecol,1999,18(3):293-300.

    [62]

    Rahav E,Silverman J,Raveh O,et al.The deep water of Eastern Mediterranean Sea is a hotspot for bacterial activity[J].Deep Sea Res Part II Top Stud Oceanogr,2019,164:135-143.

    [63]

    Kawasaki N,Benner R.Bacterial release of dissolved organic matter during cell growth and decline:Molecular origin and composition[J].Limnol Oceanogr,2006,51(5):2170-2180.

    [64]

    Ogawa H,Amagai Y,Koike I,et al.Production of refractory dissolved organic matter by bacteria[J].Science,2001,292(5518):917-920.

    [65]

    Lomstein B A,Jørgensen B B,Schubert C J,et al.Amino acid biogeo- and stereochemistry in coastal Chilean sediments[J].Geochim Cosmochim Acta,2006,70(12):2970-2989.

    [66]

    Lechtenfeld O J,Hertkorn N,Shen Y,et al.Marine sequestration of carbon in bacterial metabolites[J].Nat Commun,2015,6:6711.

    [67]

    Hertkorn N,Harir M,Koch B P,et al.High-field NMR spectroscopy and FTICR mass spectrometry:Powerful discovery tools for the molecular level characterization of marine dissolved organic matter[J].Biogeosciences,2013,10(3):1583-1624.

    [68]

    Hertkorn N,Benner R,Frommberger M,et al.Characterization of a major refractory component of marine dissolved organic mat-ter[J].Geochim Cosmochim Acta,2006,70(12):2990-3010.

    [69]

    Arístegui J,Duarte C M,Agustí S,et al.Dissolved organic carbon support of respiration in the dark ocean[J].Science,2002,298(5600):1967.

    [70]

    Lauro F M,McDougald D,Thomas T,et al.The genomic basis of trophic strategy in marine bacteria[J].Proc Natl Acad Sci USA,2009,106(37):15527-15533.

    [71]

    Lauro F M,Bartlett D H.Prokaryotic lifestyles in deep sea habi-tats[J].Extremophiles,2008,12(1):15-25.

    [72]

    Yokokawa T,Yang Y H,Motegi C,et al.Large-scale geographical variation in prokaryotic abundance and production in meso- and bathypelagic zones of the central Pacific and Southern Ocean[J].Limnol Oceanogr,2013,58(1):61-73.

    [73]

    Herndl G J,Reinthaler T.Microbial control of the dark end of the biological pump[J].Nat Geosci,2013,6(9):718-724.

    [74]

    Wuchter C,Abbas B,Coolen M J L,et al.Archaeal nitrification in the ocean[J].Proc Natl Acad Sci USA,2006,103(33):12317-12322.

    [75]

    Anantharaman K,Breier J A,Sheik C S,et al.Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria[J].Proc Natl Acad Sci USA,2013,110(1):330-335.

    [76]

    Swan B K,Martinez-Garcia M,Preston C M,et al.Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean[J].Science,2011,333(6047):1296-1300.

    [77]

    Stahl D A,de la Torre J R.Physiology and diversity of ammonia-oxidizing archaea[J].Annu Rev Microbiol,2012,66(1):83-101.

    [78]

    Brochier-Armanet C,Boussau B,Gribaldo S,et al.Mesophilic crenarchaeota:Proposal for a third archaeal phylum,the Thaumarchaeota[J].Nat Rev Microbiol,2008,6(3):245-252.

    [79]

    Martens-Habbena W,Berube P M,Urakawa H,et al.Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J].Nature,2009,461(7266):976-979.

    [80]

    Nunoura T,Takaki Y,Hirai M,et al.Hadal biosphere:Insight into the microbial ecosystem in the deepest ocean on Earth[J].Proc Natl Acad Sci USA,2015,112(11):E1230-E1236.

    [81]

    Karner M B,DeLong E F,Karl D M.Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J].Nature,2001,409(6819):507-510.

    [82]

    Nunoura T,Nishizawa M,Hirai M,et al.Microbial diversity in sediments from the bottom of the challenger deep,the mariana trench[J].Microbes Environ,2018,33(2):186-194.

    [83]

    Zhang Y,Qin W,Hou L,et al.Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean[J].Proc Natl Acad Sci USA,2020,117(9):4823-4830.

    [84]

    Sintes E,Bergauer K,De Corte D,et al.Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean[J].Environ Microbiol,2013,15(5):1647-1658.

    [85]

    Santoro A E,Saito M A,Goepfert T J,et al.Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation[J].Limnol Oceanogr,2017,62(5):1984-2003.

    [86]

    Santoro A E,Casciotti K L,Francis C A.Activity,abundance and diversity of nitrifying archaea and bacteria in the central California current[J].Environ Microbiol,2010,12(7):1989-2006.

    [87]

    Könneke M,Schubert D M,Brown P C,et al.Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation[J].Proc Natl Acad Sci USA,2014,111(22):8239-8244.

    [88]

    Wang Y,Huang J M,Cui G J,et al.Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep oc-ean[J].Environ Microbiol,2019,21(2):716-729.

    [89]

    Qin W,Amin S A,Martens-Habbena W,et al.Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation[J].Proc Natl Acad Sci USA,2014,111(34):12504-12509.

    [90]

    Offre P,Kerou M,Spang A,et al.Variability of the transporter gene complement in ammonia-oxidizing archaea[J].Trends Microbiol,2014,22(12):665-675.

    [91]

    Kim J G,Park S J,Sinninghe Damsté J S,et al.Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea[J].Proc Natl Acad Sci USA,2016,113(28):7888-7893.

    [92]

    Kuypers M M M,Blokker P,Erbacher J,et al.Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic ev-ent[J].Science,2001,293(5527):92-95.

    [93]

    Bhattarai S,Cassarini C,Lens P N L.Physiology and distribution of archaeal methanotrophs that couple anaerobic oxidation of methane with sulfate reduction[J].Microbiol Mol Biol Rev,2019,83(3):e00074-18.

    [94]

    Knittel K,Boetius A.Anaerobic oxidation of methane:Progress with an unknown process[J].Annu Rev Microbiol,2009,63:311-334.

    [95]

    Cui M M,Ma A Z,Qi H Y,et al.Anaerobic oxidation of methane:An "active" microbial process[J].Microbiologyopen,2015,4(1):1-11.

    [96]

    Scheller S,Goenrich M,Boecher R,et al.The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of meth-ane[J].Nature,2010,465(7298):606-608.

    [97]

    Wegener G,Krukenberg V,Riedel D,et al.Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria[J].Nature,2015,526(7574):587-590.

    [98]

    Mozhaev V V,Heremans K,Frank J,et al.High pressure effects on protein structure and function[J].Proteins,1996,24(1):81-91.

    [99]

    Balny C,Masson P,Heremans K.High pressure effects on biological macromolecules:From structural changes to alteration of cellular processes[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):3-10.

    [100]

    Winter R.Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases,model biomembranes and proteins in solution at high pressure[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):160-184.

    [101]

    Bartlett D H.Pressure effects on in vivo microbial processes[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):367-381.

    [102]

    Xie Z,Jian H H,Jin Z,et al.Enhancing the adaptability of the deep-sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress[J].Appl Environ Microbiol,2018,84(5):e02342-17.

    [103]

    Tahara E B,Navarete F D T,Kowaltowski A J.Tissue-,substrate-,and site-specific characteristics of mitochondrial reactive oxygen species generation[J].Free Radic Biol Med,2009,46(9):1283-1297.

    [104]

    Xiao X,Zhang Y.Life in extreme environments:Approaches to study life-environment co-evolutionary strategies[J].Sci China Earth Sci,2014,57(5):869-877.

    [105]

    Yang S S,Lv Y X,Liu X P,et al.Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea[J].Nat Commun,2020,11:3941.

    [106]

    Zhang Y,Henriet J P,Bursens J,et al.Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor[J].Bioresour Technol,2010,101(9):3132-3138.

    [107]

    Jiao N Z,Liu J H,Jiao F L,et al.Microbes mediated comprehensive carbon sequestration for negative emissions in the ocean[J].Natl Sci Rev,2020,7(12):1858-1860.

  • 加载中
计量
  • 文章访问数:  903
  • PDF下载数:  109
  • 施引文献:  0
出版历程
收稿日期:  2021-07-14
修回日期:  2021-08-20

目录