Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone
-
Abstract:
The Rocha River is a receptor to receive wastewater from household, hospital and industry, from where contaminants are transported in the river, affecting biodiversity and the ecosystem of the area. In this paper we estimated the maximum transport of total chromium and chloride anion by applying the analytical model of Ogata & Banks (1961), and the results obtained are grouped into three zones: Contaminated, transition, and uncontaminated. The analytical model was applied with 13 samples collected from the river piezometers installed near Rocha, where they are arranged in two lines, i.e. RH-1 to RH-6 as the first line and RH-9 to RH-12 as the second line. The total chromium concentrations range from 0.16 mg/L (RH-1) and 0.11 mg/L (RH-9) at the closest points to Rocha River, to 0.13 mg/L (RH-7) and 0.03 mg/L (RH-12) at the most remote points to the river. The advance of the pollutants does not exceed 50 meters with respect to the axis of the Rocha River.
-
Key words:
- Total chromium /
- Chloride anion /
- Contamination /
- Rocha River /
- Thiu Rancho
-
Table 1. Values of average hydraulic conductivity
Line RH-7 to RH-1 Distance
(m)Hvorslev K (m/s) Bouwer and rice K (m/s) Hvorslev
Kb (m/s)Bouwer and rice
Kb (m/s)Hvorslev K (m/day) Bouwer and rice K (m/day) RH-1 1.60 5.4E-05 4.1E-05 1.0E-06 8.0E-07 0.09 0.07 RH-2 5.15 7.7E-07 6.0E-07 RH-3 4.41 8.3E-07 6.3E-07 RH-4 1.73 7.9E-07 6.0E-07 RH-5 1.75 1.1E-06 8.1E-07 RH-6 1.74 2.5E-06 1.9E-06 Total (m) 17.24 Line RH-12 to RH-1 Distance
(m)Hvorslev K (m/s) Bouwer and rice K (m/s) Hvorslev
Kb (m/s)Bouwer and rice
Kb (m/s)Hvorslev K (m/day) Bouwer and rice K (m/day) RH-12 1.17 6.6E-07 5.0E-07 4.2E-06 3.2E-06 0.37 0.28 RH-11 2.18 6.4E-06 5.0E-06 RH-10 4.75 5.0E-06 3.7E-06 RH-9 4.59 1.7E-05 1.3E-05 RH-8 1.94 9.9E-06 7.6E-06 JRH-1 1.12 6.0E-06 4.4E-06 Total (m) 15.75 Average = 2.6E-06 2.0E-06 0.23 0.17 Table 2. Chloride concentrations and total chromium
01th Jul. 08th Sep. 22th Nov. Code E(m) N(m) Z
(m.a.s.l.)Cl-
(mg/L)Total Cr
(mg/L)Total Cr
(mg/kg)Cl-
(mg/L)Total Cr
(mg/L)Cl-
(mg/L)Total Cr
(mg/L)RH-1 785055.726 8069370.579 2 400.181 44.03 0.16 83 19.99 < 0.02 14.33 < 0.02 RH-2 785053.557 8069372.932 2 400.115 46.96 0.18 81.4 22.49 < 0.02 18.46 < 0.02 RH-3 785048.892 8069378.293 2 400.041 24.46 0.1 24.99 < 0.02 RH-4 785047.734 8069379.566 2 399.958 34.73 0.12 24.99 < 0.02 RH-5 785046.645 8069380.928 2 399.998 26.42 0.11 16 < 0.02 RH-6 785045.646 8069382.373 2 400.062 20.55 0.13 64 15 < 0.02 14.57 < 0.02 RH-7 785044.591 8069383.728 2 400.093 29.35 0.13 19.99 < 0.02 RH-8 785059.644 8069378.939 2 400.151 48.92 0.14 77.2 34.79 < 0.02 23.31 < 0.02 RH-9 785058.523 8069377.733 2 400.123 49.9 0.11 73.9 34.79 < 0.02 RH-10 785052.192 8069381.830 2 400.024 44.03 0.09 34.79 < 0.02 RH-11 785050.864 8069383.341 2 400.042 31.31 0.02 24.99 < 0.02 RH-12 785049.511 8069385.260 2 400.017 24.46 0.03 64.7 23.99 < 0.02 22.83 < 0.02 JRH-1 785061.514 8069377.719 2 400.018 24.99 < 0.02 18.46 < 0.02 Rocha River 784984.577 8070318.412 2 397.100 104.97 < 0, 02 Table 3. Initial concentration and observed as a result of the application of analytical model of Ogata and Banks (1961)
Total chromium (mg/L) Chlorides (mg/L) Line Distance (m) Time (days) C/Co Co C C/Co Co C RH-1 to RH-6 15.51 30 0.29 0.44 0.13 0.25 84 20.79 RH-9 to RH-12 11.87 30 0.09 0.31 0.03 0.36 68 24.42 RH-1 to RH-6 25 30 0.09 0.44 0.04 0.05 84 4.37 RH-9 to RH-12 25 30 0.00 0.31 0.00 0.01 68 0.52 RH-1 to RH-6 50 30 5.80E-04 0.44 2.55E-04 1.04E-04 84 8.74E-03 RH-9 to RH-12 50 30 1.58E-12 0.31 4.90E-13 1.00E-07 68 6.80E-06 -
Anderson MP. 1979. Using models to simulate the movement of contaminates through groundwater flow system. CRC Critical Reviews in Environmental Control, 9(2): 97-156.
Crank J. 1956. The mathematics of diffusion. New York: Oxford University Press.
Dundar MS, Altundag H. 2006. Investigation of heavy metal contaminations in the lower Sakarya river water and sediments. Sakarya University, Environmental Monitoring Assess-ment, 128: 177-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59e7f5448adf5035b2b4c3087b7b3aed
Faust CR, Mercer JW. 1980. Groundwater modeling: Recent developments. Ground Water, 18(6): 569-77. doi: 10.1111/j.1745-6584.1980.tb03651.x
Fetter CW. 2001. Applied hydrogeology. Fourth Edition. Prentice-Hall.
Fetter CW. 1999. Contaminant hydrogeology. Second Edition. Prentice-Hall.
Fetter CW. 1994. Applied hydrogeology. Third Edition. Prentice-Hall.
Fetter CW. 1977. Attenuation of waste water elutriated through glacial outwash. Ground Water, 15(5): 365-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1745-6584.1977.tb03181.x
HUANG Yong, WANG Ping, FU Zhi-min, et al. 2019. Experimental and numerical research on migration of LNAPL contaminants in fractured porous media. Hydrogeology Journal, 28: 1269-1284. https://doi.org/10.1007/s10040-020-02118-w doi: 10.1007/s10040-020-02118-w
Hvorslev MJ. 1951. Time lag and soil permeability in ground water observations. U.S. Army Corps of Engineers Water-way Experi-mentation Station, Bulletin 36.
Kavouri KP, Karatzas GP, Plagnes V. 2017. A coupled groundwater flow-modelling and vulnerability-mapping methodology for karstic terrain management. Hydrogeology Journal, 25(5): 1301-1317. https://doi.org/10.1007/s10040-017-1548-6 doi: 10.1007/s10040-017-1548-6
LI An, Tsai FTC, Yuill BT, et al. 2020. A three-dimensional stratigraphic model of the Mississippi River Delta, USA: Implications for river deltaic hydrogeology. Hydrogeology Journal. https://doi.org/10.1007/s10040-020-02198-8
10.1007/s10040-020-02198-8 Maldonado M, Van Damme P, Rojas J. 1998. Pollution and eutrophication in the Rocha river basin. Bolivian Journal of Ecology and Environmental, 3: 3-9.
Malott S, O'Carroll DM, Robinson CE. 2016. Dynamic groundwater flows and geochemistry in a sandy nearshore aquifer over a wave event. Water Resource Research, 52(7): 5248-5264. https://doi.org/10.1002/2015wr017537 doi: 10.1002/2015wr017537
Ogata A. 1970. Theory of dispersion in a granular medium. U.S. Geological Survey Professional Paper 411-I.
Ogata A, Banks RB. 1961. Solution of the differential equation of longitudinal dispersion in porous media. US. Geological Survey Professional Paper 411-A.
Prickett TA, Naymik CT, Lonnquist CG. 1981. A "random walk" solute transport model for selected ground-water quality evaluations. Illinois State Water Survey, Bulletin 65: 103. http://hdl.handle.net/2142/94526
Romero AM, Vandecasteele C, Cooreman H. 2000. Metals (Cr, Pb, and Zn) in sediments and chironomids of the Rocha river. Bolivian Jour-nal of Ecology and Environmental, 8: 37-47.
Sefelnasr A, Gossel W, Wycisk P. 2014. Three-dimensional groundwater flow modeling approach for the groundwater management options for the Dakhla Oasis, Western Desert, Egypt. Environmental Earth Sciences, 72(4): 12227-122241. https://doi.org/10.1007/s12665-013-3041-4 doi: 10.1007/s12665-013-3041-4
Sookhak LK, Johnston CD, Rayner JL, et al. 2018. Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials. Journal of Hazard Material, 345: 87-96.https://doi.org/10.1016/j.jhazmat.2017.11.006 doi: 10.1016/j.jhazmat.2017.11.006
Sookhak LK, Rayner JL, Davis GB. 2018b. Towards characterizing LNAPL remediation endpoints. J Environ Manag, 224: 97-105. https://doi.org/10.1016/j.jenvman.2018.07.041 doi: 10.1016/j.jenvman.2018.07.041
Sookhak LK, Davis GB, Rayner JL, et al. 2019a. Natural source zone depletion of LNAPL: A critical review supporting modelling appro-aches. Water Resource Research, 157: 630-646.https://doi.org/10.1016/j.watres.2019.04.001 doi: 10.1016/j.watres.2019.04.001
Sookhak LK, Rayner JL, Davis GB. 2019b. Toward optimizing LNAPL remediation. Water Resour Research, 55(2): 923-936. https://doi.org/10.1029/2018wr023380 doi: 10.1029/2018wr023380
Srinivasan P, Mercer JW. 1988. Simulation of biodegradation and sorption processes in ground wáter. Ground Water, 26(4): 475-487. doi: 10.1111/j.1745-6584.1988.tb00414.x
Terrazas J. 2018. Potential non-point pollution index (PNPI) in the Rocha Basin. San Simón University (UMSS). http://hdl.handle.net/123456789/10984