中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Terrazas-Salvatierra Jhim, Munoz-Vásquez Galo, Romero-Jaldin Ana. 2020. Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone. Journal of Groundwater Science and Engineering, 8(3): 223-229. doi: 10.19637/j.cnki.2305-7068.2020.03.003
Citation: Terrazas-Salvatierra Jhim, Munoz-Vásquez Galo, Romero-Jaldin Ana. 2020. Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone. Journal of Groundwater Science and Engineering, 8(3): 223-229. doi: 10.19637/j.cnki.2305-7068.2020.03.003

Migration of total chromium and chloride anion in the Rocha River used for estimating degradation of agricultural soil quality at the Thiu Rancho zone

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Table 1.  Values of average hydraulic conductivity

    Line RH-7 to RH-1 Distance
    (m)
    Hvorslev K (m/s) Bouwer and rice K (m/s) Hvorslev
    Kb (m/s)
    Bouwer and rice
    Kb (m/s)
    Hvorslev K (m/day) Bouwer and rice K (m/day)
    RH-1 1.60 5.4E-05 4.1E-05 1.0E-06 8.0E-07 0.09 0.07
    RH-2 5.15 7.7E-07 6.0E-07
    RH-3 4.41 8.3E-07 6.3E-07
    RH-4 1.73 7.9E-07 6.0E-07
    RH-5 1.75 1.1E-06 8.1E-07
    RH-6 1.74 2.5E-06 1.9E-06
    Total (m) 17.24
    Line RH-12 to RH-1 Distance
    (m)
    Hvorslev K (m/s) Bouwer and rice K (m/s) Hvorslev
    Kb (m/s)
    Bouwer and rice
    Kb (m/s)
    Hvorslev K (m/day) Bouwer and rice K (m/day)
    RH-12 1.17 6.6E-07 5.0E-07 4.2E-06 3.2E-06 0.37 0.28
    RH-11 2.18 6.4E-06 5.0E-06
    RH-10 4.75 5.0E-06 3.7E-06
    RH-9 4.59 1.7E-05 1.3E-05
    RH-8 1.94 9.9E-06 7.6E-06
    JRH-1 1.12 6.0E-06 4.4E-06
    Total (m) 15.75 Average = 2.6E-06 2.0E-06 0.23 0.17
    下载: 导出CSV

    Table 2.  Chloride concentrations and total chromium

    01th Jul. 08th Sep. 22th Nov.
    Code E(m) N(m) Z
    (m.a.s.l.)
    Cl-
    (mg/L)
    Total Cr
    (mg/L)
    Total Cr
    (mg/kg)
    Cl-
    (mg/L)
    Total Cr
    (mg/L)
    Cl-
    (mg/L)
    Total Cr
    (mg/L)
    RH-1 785055.726 8069370.579 2 400.181 44.03 0.16 83 19.99 < 0.02 14.33 < 0.02
    RH-2 785053.557 8069372.932 2 400.115 46.96 0.18 81.4 22.49 < 0.02 18.46 < 0.02
    RH-3 785048.892 8069378.293 2 400.041 24.46 0.1 24.99 < 0.02
    RH-4 785047.734 8069379.566 2 399.958 34.73 0.12 24.99 < 0.02
    RH-5 785046.645 8069380.928 2 399.998 26.42 0.11 16 < 0.02
    RH-6 785045.646 8069382.373 2 400.062 20.55 0.13 64 15 < 0.02 14.57 < 0.02
    RH-7 785044.591 8069383.728 2 400.093 29.35 0.13 19.99 < 0.02
    RH-8 785059.644 8069378.939 2 400.151 48.92 0.14 77.2 34.79 < 0.02 23.31 < 0.02
    RH-9 785058.523 8069377.733 2 400.123 49.9 0.11 73.9 34.79 < 0.02
    RH-10 785052.192 8069381.830 2 400.024 44.03 0.09 34.79 < 0.02
    RH-11 785050.864 8069383.341 2 400.042 31.31 0.02 24.99 < 0.02
    RH-12 785049.511 8069385.260 2 400.017 24.46 0.03 64.7 23.99 < 0.02 22.83 < 0.02
    JRH-1 785061.514 8069377.719 2 400.018 24.99 < 0.02 18.46 < 0.02
    Rocha River 784984.577 8070318.412 2 397.100 104.97 < 0, 02
    下载: 导出CSV

    Table 3.  Initial concentration and observed as a result of the application of analytical model of Ogata and Banks (1961)

    Total chromium (mg/L) Chlorides (mg/L)
    Line Distance (m) Time (days) C/Co Co C C/Co Co C
    RH-1 to RH-6 15.51 30 0.29 0.44 0.13 0.25 84 20.79
    RH-9 to RH-12 11.87 30 0.09 0.31 0.03 0.36 68 24.42
    RH-1 to RH-6 25 30 0.09 0.44 0.04 0.05 84 4.37
    RH-9 to RH-12 25 30 0.00 0.31 0.00 0.01 68 0.52
    RH-1 to RH-6 50 30 5.80E-04 0.44 2.55E-04 1.04E-04 84 8.74E-03
    RH-9 to RH-12 50 30 1.58E-12 0.31 4.90E-13 1.00E-07 68 6.80E-06
    下载: 导出CSV
  • Anderson MP. 1979. Using models to simulate the movement of contaminates through groundwater flow system. CRC Critical Reviews in Environmental Control, 9(2): 97-156.

    Crank J. 1956. The mathematics of diffusion. New York: Oxford University Press.

    Dundar MS, Altundag H. 2006. Investigation of heavy metal contaminations in the lower Sakarya river water and sediments. Sakarya University, Environmental Monitoring Assess-ment, 128: 177-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59e7f5448adf5035b2b4c3087b7b3aed

    Faust CR, Mercer JW. 1980. Groundwater modeling: Recent developments. Ground Water, 18(6): 569-77. doi: 10.1111/j.1745-6584.1980.tb03651.x

    Fetter CW. 2001. Applied hydrogeology. Fourth Edition. Prentice-Hall.

    Fetter CW. 1999. Contaminant hydrogeology. Second Edition. Prentice-Hall.

    Fetter CW. 1994. Applied hydrogeology. Third Edition. Prentice-Hall.

    Fetter CW. 1977. Attenuation of waste water elutriated through glacial outwash. Ground Water, 15(5): 365-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1745-6584.1977.tb03181.x

    HUANG Yong, WANG Ping, FU Zhi-min, et al. 2019. Experimental and numerical research on migration of LNAPL contaminants in fractured porous media. Hydrogeology Journal, 28: 1269-1284. https://doi.org/10.1007/s10040-020-02118-w doi: 10.1007/s10040-020-02118-w

    Hvorslev MJ. 1951. Time lag and soil permeability in ground water observations. U.S. Army Corps of Engineers Water-way Experi-mentation Station, Bulletin 36.

    Kavouri KP, Karatzas GP, Plagnes V. 2017. A coupled groundwater flow-modelling and vulnerability-mapping methodology for karstic terrain management. Hydrogeology Journal, 25(5): 1301-1317. https://doi.org/10.1007/s10040-017-1548-6 doi: 10.1007/s10040-017-1548-6

    LI An, Tsai FTC, Yuill BT, et al. 2020. A three-dimensional stratigraphic model of the Mississippi River Delta, USA: Implications for river deltaic hydrogeology. Hydrogeology Journal. https://doi.org/10.1007/s10040-020-02198-810.1007/s10040-020-02198-8

    Maldonado M, Van Damme P, Rojas J. 1998. Pollution and eutrophication in the Rocha river basin. Bolivian Journal of Ecology and Environmental, 3: 3-9.

    Malott S, O'Carroll DM, Robinson CE. 2016. Dynamic groundwater flows and geochemistry in a sandy nearshore aquifer over a wave event. Water Resource Research, 52(7): 5248-5264. https://doi.org/10.1002/2015wr017537 doi: 10.1002/2015wr017537

    Ogata A. 1970. Theory of dispersion in a granular medium. U.S. Geological Survey Professional Paper 411-I.

    Ogata A, Banks RB. 1961. Solution of the differential equation of longitudinal dispersion in porous media. US. Geological Survey Professional Paper 411-A.

    Prickett TA, Naymik CT, Lonnquist CG. 1981. A "random walk" solute transport model for selected ground-water quality evaluations. Illinois State Water Survey, Bulletin 65: 103. http://hdl.handle.net/2142/94526

    Romero AM, Vandecasteele C, Cooreman H. 2000. Metals (Cr, Pb, and Zn) in sediments and chironomids of the Rocha river. Bolivian Jour-nal of Ecology and Environmental, 8: 37-47.

    Sefelnasr A, Gossel W, Wycisk P. 2014. Three-dimensional groundwater flow modeling approach for the groundwater management options for the Dakhla Oasis, Western Desert, Egypt. Environmental Earth Sciences, 72(4): 12227-122241. https://doi.org/10.1007/s12665-013-3041-4 doi: 10.1007/s12665-013-3041-4

    Sookhak LK, Johnston CD, Rayner JL, et al. 2018. Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials. Journal of Hazard Material, 345: 87-96.https://doi.org/10.1016/j.jhazmat.2017.11.006 doi: 10.1016/j.jhazmat.2017.11.006

    Sookhak LK, Rayner JL, Davis GB. 2018b. Towards characterizing LNAPL remediation endpoints. J Environ Manag, 224: 97-105. https://doi.org/10.1016/j.jenvman.2018.07.041 doi: 10.1016/j.jenvman.2018.07.041

    Sookhak LK, Davis GB, Rayner JL, et al. 2019a. Natural source zone depletion of LNAPL: A critical review supporting modelling appro-aches. Water Resource Research, 157: 630-646.https://doi.org/10.1016/j.watres.2019.04.001 doi: 10.1016/j.watres.2019.04.001

    Sookhak LK, Rayner JL, Davis GB. 2019b. Toward optimizing LNAPL remediation. Water Resour Research, 55(2): 923-936. https://doi.org/10.1029/2018wr023380 doi: 10.1029/2018wr023380

    Srinivasan P, Mercer JW. 1988. Simulation of biodegradation and sorption processes in ground wáter. Ground Water, 26(4): 475-487. doi: 10.1111/j.1745-6584.1988.tb00414.x

    Terrazas J. 2018. Potential non-point pollution index (PNPI) in the Rocha Basin. San Simón University (UMSS). http://hdl.handle.net/123456789/10984

  • 加载中

(5)

(3)

计量
  • 文章访问数:  1186
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2019-11-06
录用日期:  2020-02-19
刊出日期:  2020-09-25

目录