西藏札佐晚白垩世中期埃达克岩年代学、地球化学及其构造意义

侯德华, 潘志龙, 杨鑫朋, 张立国, 何娇月, 张欢, 程洲, 王硕, 王金贵. 2023. 西藏札佐晚白垩世中期埃达克岩年代学、地球化学及其构造意义. 沉积与特提斯地质, 43(3): 592-603. doi: 10.19826/j.cnki.1009-3850.2021.01006
引用本文: 侯德华, 潘志龙, 杨鑫朋, 张立国, 何娇月, 张欢, 程洲, 王硕, 王金贵. 2023. 西藏札佐晚白垩世中期埃达克岩年代学、地球化学及其构造意义. 沉积与特提斯地质, 43(3): 592-603. doi: 10.19826/j.cnki.1009-3850.2021.01006
HOU Dehua, PAN Zhilong, YANG Xinpeng, ZHANG Liguo, HE Jiaoyue, ZHANG Huan, CHENG Zhou, WANG Shuo, WANG Jingui. 2023. Chronology, geochemistry and tectonic significance of middle stage of Late Cretaceous adakite in Zhazuo aera, Tibet. Sedimentary Geology and Tethyan Geology, 43(3): 592-603. doi: 10.19826/j.cnki.1009-3850.2021.01006
Citation: HOU Dehua, PAN Zhilong, YANG Xinpeng, ZHANG Liguo, HE Jiaoyue, ZHANG Huan, CHENG Zhou, WANG Shuo, WANG Jingui. 2023. Chronology, geochemistry and tectonic significance of middle stage of Late Cretaceous adakite in Zhazuo aera, Tibet. Sedimentary Geology and Tethyan Geology, 43(3): 592-603. doi: 10.19826/j.cnki.1009-3850.2021.01006

西藏札佐晚白垩世中期埃达克岩年代学、地球化学及其构造意义

  • 基金项目: “冈底斯-喜马拉雅铜矿资源基地调查”(DD20160015-09)
详细信息
    作者简介: 侯德华(1989—),男,硕士,工程师,主要从事区域地质调查工作。E-mail:dhhou@qq.com
  • 中图分类号: P581;P595

Chronology, geochemistry and tectonic significance of middle stage of Late Cretaceous adakite in Zhazuo aera, Tibet

  • 为解释南冈底斯晚白垩世埃达克质岩石成因及其地球动力学机制,本文对西藏扎囊县札佐地区二长花岗岩开展了锆石U-Pb年代学、Hf同位素和全岩地球化学分析。札佐二长花岗岩锆石U-Pb定年为80.43±0.62 Ma,其SiO2为66.19%~66.84%,Al2O3为15.17%~15.48%,MgO为1.67%~1.91%,Mg#为47.4~51.5,K2O为3.86%~4.09%,A/CNK=0.91~1.01,属准铝质高钾钙碱性岩石。岩石轻稀土富集明显,高Sr(492×10−6~670.2×10−6),低Y(8.27×10−6~14.99×10−6),Yb(1.07×10−6~1.79×10−6),高Sr/Y(35.0~81.0),高La/Yb(17.4~21.4),弱负Eu异常,具埃达克岩地球化学特征。相对富集大离子亲石元素(LILE),亏损高场强元素(HFSE)和重稀土。锆石εHft)值为10.5~14.1,单阶段Hf模式年龄(tDM1)为184.8~326.1 Ma,平均为203.4 Ma,二阶段Hf模式年龄(tDM2)为247.2~476.0 Ma,平均为287.1 Ma,略大于侵位年龄,指示岩浆物质来源于俯冲洋壳,并可能卷入俯冲沉积物。岩石中地幔组分印记Mg#值和相容元素Ni、Cr含量较高,表明熔体在上升过程中与上覆地幔楔发生反应。研究分析表明,在新特提斯洋洋脊俯冲作用下,高温热流透过板片窗导致洋壳(及俯冲沉积物)部分熔融形成札佐埃达克质二长花岗岩。同时表明,在80 Ma左右,新特提斯洋仍处于洋脊俯冲阶段。

  • 加载中
  • 图 1  青藏高原及冈底斯构造简图(a; 据朱弟成等,2009)和札佐地区地质图(b)

    Figure 1. 

    图 2  札佐二长花岗岩野外及镜下特征(正交偏光)

    Figure 2. 

    图 3  二长花岗岩TAS图解(a; 底图据Middlemost(1994))和K2O-SiO2图解(b;底图据Peccerillo et al.(1976))

    Figure 3. 

    图 4  二长花岗岩稀土元素配分曲线(a)和微量元素配分曲线(b)(稀土元素标准化值据Boynton and William,1984;微量元素标准化值据McDonough and Sun,1995

    Figure 4. 

    图 5  二长花岗岩锆石阴极发光图像

    Figure 5. 

    图 6  二长花岗岩锆石U-Pb年龄谐和图及加权平均年龄图

    Figure 6. 

    图 7  札佐二长花岗岩Y-Sr/Y(a)和YbN-(La/Yb)N(b)判别图解(据Defant and Drummond, 1990)

    Figure 7. 

    图 8  札佐二长花岗岩εHf(t)-t图解

    Figure 8. 

    图 9  札佐埃达克岩源区判别图解Yb-SiO2 (a)和MgO-SiO2(b)(据Wang, 2006)

    Figure 9. 

    表 1  二长花岗岩主量、稀土、微量元素分析结果

    Table 1.  Major elements, REE and trace elements of the monzogranite

    样号ZZ01ZZ02ZZ03ZZ04样号ZZ01ZZ02ZZ03ZZ04
    SiO266.1966.8467.5666.48Hf3.124.644.453.69
    Al2O315.4815.2715.2315.17Ta0.690.690.380.89
    TiO20.520.490.470.56W0.330.410.560.47
    Fe2O31.591.821.621.73Tl0.440.750.660.53
    FeO2.051.751.572.05Pb11.116.613.111.4
    CaO3.112.872.43.39Bi0.070.120.060.055
    MgO1.851.811.671.91Th9.8415.35.5133.2
    K2O3.864.093.913.95U2.273.822.768.47
    Na2O3.823.493.923.77La23.563121.2929.38
    MnO0.060.060.060.07Ce45.7561.8438.5756.44
    P2O50.160.160.140.17Pr5.877.574.576.63
    LOS1.141.191.270.61Nd20.3527.9117.224.3
    99.8499.8599.8299.86Sm3.424.772.854.16
    ALK7.687.587.827.72Eu0.861.11.10.99
    K2O/Na2O1.011.1711.05Gd2.933.852.373.58
    A/NK1.481.51.431.45Tb0.390.560.330.49
    A/ CNK0.960.991.010.91Dy2.033.031.762.64
    Mg#47.4450.8451.5448.23Ho0.370.540.320.49
    Li10.314.816.814.8Er1.081.630.971.44
    Be1.461.541.441.61Tm0.190.280.170.22
    Sc7.768.535.929.13Yb1.11.791.071.41
    V82.788.074.293.6Lu0.160.250.160.23
    Cr33.335.029.431.1Y11.8914.998.2713.17
    Co10.110.49.911.8∑REE119.95161.1101145.56
    Ni18.118.415.116.9LREE/HREE4.964.995.555.15
    Cu23.623.26.159.50(La/Yb)N14.4511.7313.4314.1
    Zn47.547.636.947.7δEu0.810.761.260.77
    Ga15.819.417.919.5Sr/Y51.4235.0581.0437.36
    Rb93.3125107113Th/Ce0.220.250.140.59
    Sr611525670492Sm/Nd0.170.170.170.17
    Zr101143141110(La/Sm)N4.334.094.714.44
    Nb9.069.345.308.00(Gd/Yb)N2.151.751.82.06
    Mo0.870.860.931.30Rb/Sr0.150.240.160.23
    Sn0.871.170.921.13Nb/Ta13.1613.5513.888.99
    Cs1.402.882.964.34Zr/Hf32.2130.8531.6829.93
    Ba443563713450Th/Yb8.948.525.1523.55
     注:LOS为烧失量;ALK= Na2O+K2O, A/NK=Al2O3/(Na2O+K2O), A/CNK=Al2O3/(CaO+Na2O+K2O); Mg#=100×Mg/(Mg+Fe); δEu=2EuN/(SmN+GdN),其中N表示球粒陨石标准化。
    下载: 导出CSV

    表 2  二长花岗岩LA-ICP-MS锆石U-Pb分析结果

    Table 2.  LA-ICP-MS zircon U-Pb dating results of the monzogranite

    测点元素含量(×10−6)Th/U同位素比值年龄(Ma)
    PbThU207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ
    ZZTW1-16.4340.8409.50.830.04710.00290.08370.00540.01280.000258137825821
    ZZTW1-23.9194.7248.60.780.04590.00280.07990.00480.01270.0002785821
    ZZTW1-312.2595.0782.60.760.04780.00190.08440.00340.01280.000187102823821
    ZZTW1-47.6337.7513.00.660.04730.00160.08330.00300.01280.00016581813821
    ZZTW1-56.3306.2442.30.690.05070.00200.08610.00370.01220.000222858843781
    ZZTW1-65.5281.4375.40.750.05480.00260.09290.00430.01230.0002467106904791
    ZZTW1-713.4959.5827.11.160.04970.00170.08590.00290.01260.000218980843811
    ZZTW1-84.6265.6365.40.730.05930.00840.08660.01110.01080.000358931384702
    ZZTW1-94.5229.6314.30.730.04880.00260.08320.00420.01250.0002139124814801
    ZZTW1-105.4272.0384.10.710.05180.00230.08900.00400.01250.0002276104874801
    ZZTW1-1118.5859.31295.10.660.04690.00140.08000.00230.01240.00014367782791
    ZZTW1-1210.0454.6714.00.640.05730.00530.09510.00920.01200.0002502206929771
    ZZTW1-136.7382.3436.60.880.05200.00440.09030.00740.01260.0003283201887812
    ZZTW1-143.0167.1191.50.870.04950.00310.08470.00520.01250.0002169146835801
    ZZTW1-153.8194.0255.90.760.04920.00310.08350.00520.01240.0002167−51815791
    ZZTW1-168.3494.1529.70.930.05150.00250.08880.00420.01260.0001261113864811
    ZZTW1-178.7551.4508.81.080.05230.00290.09280.00550.01280.0002298128905821
    ZZTW1-187.0364.4460.70.790.04670.00320.08020.00530.01250.000235156785801
    ZZTW1-195.6285.3350.90.810.05200.00260.09150.00460.01280.0002287115894821
    ZZTW1-204.2227.3250.90.910.04750.00510.08260.00810.01290.000372237818832
    下载: 导出CSV

    表 3  二长花岗岩锆石Hf同位素分析结果

    Table 3.  Zircon Hf isotopic analysis results of the monzogranite

    测点号t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177HfεHf(t)tDM1(Ma)tDM2(Ma)fLu/Hf
    ZZTW1-281.650.0169900.0007000.2831170.00006914.0188.1253.2−0.98
    ZZTW1-481.700.0162980.0007160.2830200.00004310.5326.5476.0−0.98
    ZZTW1-578.370.0228180.0009020.2831190.00027713.9187.6253.4−0.97
    ZZTW1-780.620.0203540.0008220.2831000.00004013.3213.7294.3−0.98
    ZZTW1-1080.120.0219590.0010430.2830650.00004212.0265.5376.1−0.97
    ZZTW1-1179.390.0339910.0016110.2830630.00003011.9272.4382.8−0.95
    ZZTW1-1380.920.0197000.0007870.2830610.00003911.9269.1383.4−0.98
    ZZTW1-1579.410.0225690.0009050.2830370.00003511.1303.4438.3−0.97
    ZZTW1-1680.570.0177730.0007840.2830620.00002712.0267.3380.8−0.98
    ZZTW1-1880.300.0172720.0007380.2830270.00002710.8316.2459.9−0.98
    ZZTW1-1982.170.0189280.0007760.2831200.00003914.1184.8247.2−0.98
    ZZTW1-2082.830.0181080.0007790.2830700.00002712.3255.8360.9−0.98
    下载: 导出CSV
  • [1]

    Boynton W V, 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Developments in Geochemistry, 63−114.

    [2]

    Chen L, Qin K Z, Li G M, et al. , 2015. Zircon U–Pb ages, geochemistry, and Sr–Nd–Pb–Hf isotopes of the Nuri intrusive rocks in the Gangdese area, southern Tibet: Constraints on timing, petrogenesis, and tectonic transformation[J]. Lithos, 212-215: 379-396. doi: 10.1016/j.lithos.2014.11.014

    [3]

    代作文, 李光明, 丁俊, 等, 2018. 西藏努日晚白垩世埃达克岩: 洋脊俯冲的产物[J]. 地球科学, 43(8): 2727-2741

    Dai Z W, Li G M, Ding J, et al. , 2018. Late Cretaceous adakite in Nuri area, Tibet: products of ridge subduction[J]. Earth Science, 43(8): 2727-2741

    [4]

    Defant M J, Drummond M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662-665. doi: 10.1038/347662a0

    [5]

    董随亮, 黄勇, 李光明, 等, 2015. 藏南努日铜-钨-钼矿床晚白垩世石英闪长岩U-Pb定年及其地球化学特征[J]. 岩矿测试, 34(6): 712-718

    Dong S L, Huang Y, Li G M, et al. , 2015. LA-ICP-MS zircon U-Pb dating and geochemistry of late Cretaceous quartz diorite in the Nuri Cu-Mo-W deposit, south Tibet[J]. Rock and Mineral Analysis, 34(6): 712-718

    [6]

    管琪, 朱弟成, 赵志丹, 等, 2010. 西藏南部冈底斯带东段晚白垩世埃达克岩: 新特提斯洋脊俯冲的产物?[J]. 岩石学报, 26(7): 2165-2179

    Guan Q, Zhu D C, Zhao Z D, et al. , 2010. Late Cretaceous adakites in the eastern segment of the Gangdese Belt, southern Tibet: Products of Neo-Tethyan ridge subduction?[J]. Acta Petrologica Sinica, 26(7): 2165-2179

    [7]

    Guo Z, Wilson M, Liu J, 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust [J]. Lithos, 96(1-2): 205-224. doi: 10.1016/j.lithos.2006.09.011

    [8]

    Hawkesworth C, Turner S, Peate D, et al. , 1997. Elemental U and Th variations in island arc rocks: implications for U-series isotopes[J]. Chemical Geology, 139(1-4): 207-221. doi: 10.1016/S0009-2541(97)00036-3

    [9]

    Hermann J, Spandler C, 2006. Sediment melts at sub-arc depth[J]. Geochimica Et Cosmochimica Acta, 70(18-supp-S): A248-A248.

    [10]

    侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595-2604 doi: 10.3969/j.issn.1000-0569.2007.10.025

    Hou K J, Li Y H, Zou T R, et al. , 2007. Laser ablation-MC-ICP-MS technique for Hf isotopic for Hf isotope microanalysis of zircon and its geological application[J]. Acta Petrologica Sinica, 23(10): 2595-2604 doi: 10.3969/j.issn.1000-0569.2007.10.025

    [11]

    纪伟强, 吴福元, 锺孙霖, 等, 2009. 西藏南部冈底斯岩基花岗岩时代与岩石成因[J]. 中国科学D辑, 39(7): 849-871

    Ji W Q, Wu F Y, Zhong S L, et al. , 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet[J]. Sci China Ser D-Earth Sci, 39(7): 849-871

    [12]

    Jiang Y H, Jiang S Y, Ling H F, et al. , 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr–Nd–Pb–Hf isotopic constraints[J]. Earth and Planetary Science Letters, 241(3-4): 617-633. doi: 10.1016/j.jpgl.2005.11.023

    [13]

    刘金恒, 2018. 西藏松多地区晚白垩世两期岩浆岩岩石成因及构造背景[D]. 长春: 吉林大学.

    Liu J H, 2018. Petrogenesis and tectonic setting of the late Cretaceous magmatic rocks in Songdo area, Tibet[D]. Chang Chun: Jilin University.

    [14]

    Liu Y S, Gao S, Hu Z C, et al. , 2010. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 51: : 537-571. doi: 10.1093/petrology/egp082

    [15]

    Ma L, Wang Q, Li Z X, et al. , 2013. Early Late Cretaceous (ca. 93Ma) norites and hornblendites in the Milin area, eastern Gangdese: Lithosphere–asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80Ma) magmatic "flare-up" in southern Lhasa (Tibet)[J]. Lithos, 172-173: 17-30. doi: 10.1016/j.lithos.2013.03.007

    [16]

    Macpherson C G, Dreher S T, Thirlwall M F, 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 243(3-4): 581-593. doi: 10.1016/j.jpgl.2005.12.034

    [17]

    Martin H, 1999. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 46.

    [18]

    Mcdonough W F, Sun S S, 1995. The composition of the Earth[J]. Chemical Geology, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4

    [19]

    孟繁一, 赵志丹, 朱弟成, 等, 2010. 西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因[J]. 岩石学报, 26(7): 2180-2192

    Meng F Y, Zhao Z D, Zhu D C, et al. , 2010. Petrogenesis of Late Cretaceous adakite-like rocks in Mamba from the eastern Gangdese, Tibet[J]. Acta Petrologica Sinica, 26(7): 2180-2192

    [20]

    Middlemost E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    [21]

    莫宣学, 2011. 岩浆作用与青藏高原演化[J]. 高校地质学报, 17(3): 351-367

    Mo X X, 2011. Magmatism and Evolution of the Tibetan Plateau[J]. Geological Journal of China Universities, 17(3): 351-367

    [22]

    Muir R J, Weaver S D, Bradshaw J D, et al. , 1995. The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere[J]. Journal of the Geological Society, 152(4): 689-701. doi: 10.1144/gsjgs.152.4.0689

    [23]

    潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533

    Pan G T, Mo X X, Hou Z Q, et al. , 2006. Spatial-temporal framework of the gangdese orogenic belt and its evolution[J]. Acta Petrologica Sinica, 22(3): 521-533

    [24]

    Peccerillo A, Taylor S R, 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 58(1): 63-81.

    [25]

    R. H Smithies, 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 182(1): 115-125. doi: 10.1016/S0012-821X(00)00236-3

    [26]

    Robert P. RAPP, 肖龙, Nobu Shimizu, 2002. 中国东部富钾埃达克岩成因的实验约束[J]. 岩石学报, 18(3): 293-302

    Rapp R P, Xiao L, Shimizu N, 2002. Experimental constraints on the origin of potassium-rich adakites in eastern China[J]. Acta Petrologica Sinica, 18(3): 293-302

    [27]

    Taylor M E, Forester R M, 1979. Distributional model for marine isopod crustaceans and its bearing on early Paleozoic paleozoogeography and continental drift[J]. Geological Society of America Bulletin, 90(4): 731.

    [28]

    WANG Q, 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization[J]. Journal of Petrology, 47(1): 119-144. doi: 10.1093/petrology/egi070

    [29]

    王强, 许继峰, 赵振华, 等, 2007. 中国埃达克岩或埃达克质岩及相关金属成矿作用[J]. 矿物岩石地球化学通报, 26(4): 336-349

    Wang Q, Xu J F, Zhao Z H, et al. , 2007. Adakites or adakitic rocks and associated metal metallogenesis in China[J]. Bulletin of mineralogy, petrology and geochemistry, 26(4): 336-349

    [30]

    Wen D R, Chung S L, Song B, et al. , 2008. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications [J]. Lithos, 105(1-2): 1-11. doi: 10.1016/j.lithos.2008.02.005

    [31]

    Wen D R, Liu D, Chung S L, et al. , 2008. Zircon SHRIMP U–Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet [J]. Chemical Geology, 252(3-4): 191-201. doi: 10.1016/j.chemgeo.2008.03.003

    [32]

    吴昌炟, 2019. 西藏冈底斯带埃达克岩岩石成因与斑岩铜成矿潜力研究[D]. 北京: 中国地质大学(北京).

    Wu C D, 2019. Petrogenesis of adakites and its potential for porphyry copper mineralization in Gangdese belt, Tibet[D]. Beijing: China University of Geosciences(Beijing).

    [33]

    吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220

    Wu F Y, Li X H, Zh Y F, et al. , 2007. Lu-Hf isotopic systematics and their application in petrology[J]. Acta Petrologica Sinica, 23(2): 185-220

    [34]

    Wu F Y, Yang Y H, Xie L W, et al. , 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology[J]. Chemical Geology, 234(1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003

    [35]

    肖龙, Robert P RAPP, 许继峰, 2004. 深部过程对埃达克质岩石成分的制约[J]. 岩石学报, 20(2): 219−228

    Xiao L, Robert R P, Xu J F, 2004. The role of deep process controls on variation of compositions adakitic rocks. Acta Petrologica Sinica, 20(2): 219−228

    [36]

    续海金, 马昌前, 2003. 实验岩石学对埃达克岩成因的限定——兼论中国东部富钾高Sr/Y比值花岗岩类[J]. 地学前缘, 10(4): 417-427

    Xu H J, Ma C Q, 2003. Constraints of experimental petrology on the origin of adakites, and petrogenesis of Mesozoic K-rich and high Sr/Y ratio granitoids in eastern China[J]. Earth Science Frontiers, 10(4): 417-427

    [37]

    Xu J F, Shinjo R, Defant M J, et al. , 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?[J]. Geology, 30(12): 1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

    [38]

    Xu W C, Zhang H F, Luo B J, et al. , 2015. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, south Tibet[J]. Lithos, 232: 197-210. doi: 10.1016/j.lithos.2015.07.001

    [39]

    许志琴, 杨经绥, 李海兵, 等, 2011. 印度-亚洲碰撞大地构造[J]. 地质学报, 85(1): 1-33 doi: 10.1111/j.1755-6724.2011.00375.x

    Xu Z Q, Yang J S, Li H B, et al. , 2011. On the tectonics of the India-Asia collision[J]. Acta Geological Sinica, 85(1): 1-33 doi: 10.1111/j.1755-6724.2011.00375.x

    [40]

    姚兴华, 张志平, 汪宏涛, 等, 2019. 西藏桑日县马门晚白垩世O型埃达克岩年代学、地球化学及构造意义[J]. 矿产勘查, (6): 1327-1338

    Yao X H, Zhang Z P, Wang H T, et al. , 2019. Chronology, geochemistry and tectonic significance of late Cretaceous O-type adakite in Mamen, Sangri county, Tibet[J]. Mineral Exploration, (6): 1327-1338

    [41]

    章凤奇, 陈汉林, 曹瑞成, 等, 2010. 海拉尔盆地基底晚古生代adakite的发现及其地质意义[J]. 岩石学报, 26(2): 633-641

    Zhang F Q, Chen H L, Cao R C, et al. , 2010. Discovery of late Paleozoic adakite from the basement of the Hailaer Basin in NE China and its geological implication[J]. Acta Geological Sinica, 26(2): 633-641

    [42]

    张宏飞, 徐旺春, 郭建秋, 等, 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成: 新特提斯洋早侏罗世俯冲作用的证据[J]. 岩石学报, 23(6): 1347-1353 doi: 10.3969/j.issn.1000-0569.2007.06.011

    Zhang H F, Xu W C, Guo J Q, et al. , 2007. Ziron U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: Evidence for early Jurassic subduction of Neo-Tethyan oceanic slab[J]. Acta Geological Sinica, 23(6): 1347-1353 doi: 10.3969/j.issn.1000-0569.2007.06.011

    [43]

    Zhang K J, Xia B D, Wang G M, et al. , 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 116(9): 1202. doi: 10.1130/B25388.1

    [44]

    Zhang Q, Jin W J, Li C D, et al. , 2010. Revisiting the new classification of granitic rocks based on whole-rock Sr and Yb contents: Index[J]. Acta Petrologica Sinica, 26(4): 985-1015.

    [45]

    张旗, 王焰, 刘红涛, 等, 2003. 中国埃达克岩的时空分布及其形成背景附: 《国内关于埃达克岩的争论》[J]. 地学前缘, 10(4): 16

    Zhang Q, Wang Y, Liu H T, et al. , 2003. On the space-time distribution and geodynamic environments of adakites in China Annex: Controversies over differing opinions for adakites in China[J]. Earth Science Frontiers, 10(4): 16

    [46]

    Zhang Z, Zhao G, Santosh M, et al. , 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction?[J]. Gondwana Research, 17(4): 615-631. doi: 10.1016/j.gr.2009.10.007

    [47]

    Zheng Y C, Hou Z Q, Gong Y L, et al. , 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth[J]. Lithos, 190-191: 240-263. doi: 10.1016/j.lithos.2013.12.013

    [48]

    朱弟成, 莫宣学, 王立全, 等, 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J]. 中国科学: 地球科学, 39(7): 833

    Zhu D C, Mo X X, Wang L Q, et al. , 2009. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes[J]. Sci China Ser D-Earth Sci, 39(7): 833

    [49]

    Zhu D C, Wang Q, Cawood P A, et al. , 2017. Raising the Gangdese Mountains in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 122(1).

    [50]

    Zhu D C, Zhao Z D, Niu Y L, et al. , 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau [J]. Gondwana Research, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002

  • 加载中

(9)

(3)

计量
  • 文章访问数:  602
  • PDF下载数:  99
  • 施引文献:  0
出版历程
收稿日期:  2020-08-11
修回日期:  2021-01-22
录用日期:  2021-03-12
刊出日期:  2023-09-30

目录