西藏伦坡拉盆地牛堡组二段晚始新世-早渐新世地球化学特征与古气候意义

包万铖, 夏国清, 路畅, 樊秋爽, 吴敬宣, 石柱. 2023. 西藏伦坡拉盆地牛堡组二段晚始新世-早渐新世地球化学特征与古气候意义. 沉积与特提斯地质, 43(3): 580-591. doi: 10.19826/j.cnki.1009-3850.2023.02023
引用本文: 包万铖, 夏国清, 路畅, 樊秋爽, 吴敬宣, 石柱. 2023. 西藏伦坡拉盆地牛堡组二段晚始新世-早渐新世地球化学特征与古气候意义. 沉积与特提斯地质, 43(3): 580-591. doi: 10.19826/j.cnki.1009-3850.2023.02023
BAO Wancheng, XIA Guoqing, LU Chang, FAN Qiushuang, WU Jinxuan, SHI Zhu. 2023. Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Tibet. Sedimentary Geology and Tethyan Geology, 43(3): 580-591. doi: 10.19826/j.cnki.1009-3850.2023.02023
Citation: BAO Wancheng, XIA Guoqing, LU Chang, FAN Qiushuang, WU Jinxuan, SHI Zhu. 2023. Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Tibet. Sedimentary Geology and Tethyan Geology, 43(3): 580-591. doi: 10.19826/j.cnki.1009-3850.2023.02023

西藏伦坡拉盆地牛堡组二段晚始新世-早渐新世地球化学特征与古气候意义

  • 基金项目: 国家自然科学基金“青藏高原新生代湖相碳酸盐碳氧同位素特征与古环境意义”(41972115)
详细信息
    作者简介: 包万铖(1996—),男,硕士研究生,沉积学专业,E-mail:cdut_bao2022@163.com
    通讯作者: 夏国清(1982—),男,博士,教授,硕士生导师,主要从事沉积学、沉积盆地分析的教学和科研工作。E-mail: xiaguoqing2012@cdut.cn
  • 中图分类号: P532

Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Tibet

More Information
  • 伦坡拉盆地位于青藏高原腹地,是感应高原隆升过程和环境变化效应的核心地带,不仅能够记录大陆碰撞过程、岩石圈和地壳变形历史,也是获取高原腹地地形地貌演化环境和气候变迁信息最理想的场所。为揭示伦坡拉盆地晚始新世-早渐新世古气候信息,选取盆地西南缘382道班剖面牛堡组二段细粒沉积物样品,通过主、微量元素分析,采用元素组合(C值)、Rb/Sr、Sr/Cu和Sr/Ba等比值以及化学蚀变指数(CIA)、元素风化指数(α)、Ln(Al2O3/Na2O)等多种化学风化指数研究了源区风化作用强度,讨论了古气候演化特征。结果表明:伦坡拉盆地牛堡组二段沉积期古气候整体较为干旱,但在始新世-渐新世之交存在一个明显的降温事件,该降温事件并不局限于伦坡拉盆地,在青藏高原及周缘其它地区也被广泛记录,是新生代始新世-渐新世全球降温事件的陆内响应。

  • 加载中
  • 图 1  青藏高原沉积盆地分布图(a)及研究区区域地质简图(b,据曲永贵等, 2011; 王永胜等, 2012修改)

    Figure 1. 

    图 2  伦坡拉盆地382道班剖面牛堡组二段综合柱状图与盆地中心达玉剖面地层对比

    Figure 2. 

    图 3  伦坡拉盆地382道班剖面各项元素比值及风化指数CIA*、αAlNa、Ln(Al2O3/Na2O)变化

    Figure 3. 

    图 4  伦坡拉盆地382道班剖面牛堡组二段SiO2/Al2O3与CIA相关性

    Figure 4. 

    图 5  伦坡拉盆地382道班剖面牛堡组二段部分元素风化指数

    Figure 5. 

    图 6  Al2O3、K2O/Na2O与CIAmolar投点图(据Iqbal, 2019修改)

    Figure 6. 

  • [1]

    白培荣, 熊兴国, 曾禹人, 等, 2018. 西藏仲巴县隆格尔地区渐新统日贡拉组孢粉组合的发现及其意义[J]. 沉积与特提斯地质, 38(3): 70-76

    Bai P R, Xiong X G, Zeng Y R, et al. , 2018. The discovery and significance of the sporopollen assemblages from the Oliogene Rigongla Formation in the Lunggar region, Zhongba, Xizang[J]. Sedimentary Geology and Tethyan Geology, 38(3): 70-76.

    [2]

    Bhatia M R, 1983. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 91(6): 611-627. doi: 10.1086/628815

    [3]

    Bhatia M R, 1984. Composition and classification of Paleozoic flysch mudrocks of eastern Australia: Implications in provenance and tectonic setting interpretation[J]. Sediment Geology, 41(2-4): 249-268. doi: 10.1016/0037-0738(84)90065-4

    [4]

    Bhatia M R, Crook K, 1986. Trace-element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 92(2): 181-193. doi: 10.1007/BF00375292

    [5]

    Calvert S E, Pedersen T F, 2007. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application[J]. Developments in Marine Geology, 1(4): 567-644.

    [6]

    Cao J, Wu M, Chen Y, et al. , 2012. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China[J]. Chemie der Erde-Geochemistry, 72(3): 245-252. doi: 10.1016/j.chemer.2011.12.002

    [7]

    Chen J, An Z S, Head J, 1999. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130, 000 years and their implications for monsoon paleoclimatology[J]. Quaternary Research, 51(3): 215-219. doi: 10.1006/qres.1999.2038

    [8]

    陈骏, 汪永进, 陈旸, 等, 2001. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J]. 地质学报, (2): 259-266

    Chen J, Wang Y J, Chen Y, et al. , 2001. Rb and Sr Geochemical Characterization of the Chinese Loess and Its Implications for Palaeomonsoon Climate[J]. Acta Geologica Sinica, 75(2): 259-266.

    [9]

    Coxall H K, Wilson P A, Heiko P, et al. , 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean[J]. Nature, 433(7021): 53-57. doi: 10.1038/nature03135

    [10]

    Cox R, Lowe D R, Cullers R L, 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. doi: 10.1016/0016-7037(95)00185-9

    [11]

    Deconto R, Pollard D, Wilson P, et al. , 2008. Thresholds for Cenozoic bipolar glaciation. [J]. Nature, 455: 652-657. doi: 10.1038/nature07337

    [12]

    Ding L, Xu Q, Yue Y H, et al. , 2014. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 392: 250-264. doi: 10.1016/j.jpgl.2014.01.045

    [13]

    杜佰伟, 谢尚克, 董宇, 等, 2016. 伦坡拉盆地渐新统丁青湖组油页岩特征及其地质意义[J]. 吉林大学学报(地球科学版), 46(3): 671-680

    Du B W, Xie S K, Dong Y, et al. , 2016. Characteristics of Oil Shale of Oligocene Dingqinghu Formation and Its Geological Significance, Lunpola Basin[J]. Journal of Jilin University(Earth Science Edition), 46(3): 671-680.

    [14]

    Dupont-Nivet G, Krijgsman W, Langereis C G, et al. , 2007. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 445: 635-638. doi: 10.1038/nature05516

    [15]

    Fang X M, Dupont−Nivet, Guillaume, et al., 2020. Revised chronology of central Tibet uplift(Lunpola Basin)[J]. Science Advances, 6(50).

    [16]

    冯兴雷, 付修根, 谭富文, 等, 2014. 羌塘盆地孔孔茶卡地区石炭系擦蒙组烃源岩沉积环境分析[J]. 现代地质, 28(5): 953-961

    Feng X L, Fu X G, Tan F W, et al. , 2014. Sedimentary Environment Characteristics of Upper Carboniferous Cameng Formation in Kongkong Chaka Area of Northern Qiangtang Basin, Tibet[J]. Geoscience, 28(5): 953-961.

    [17]

    Fedo C M, Wayne Nesbitt H, Young G M, 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 23(10): 921- 924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    [18]

    Gaillardet J, Dupré B, Allègre C J, et al. , 1999. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer?[J]. Geochimica et Cosmochimica Acta, 63(23/24): 4037-4051.

    [19]

    Garzanti E, Marta P, Massimo S, et al. , 2013. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds[J]. Geochemistry Geophysics Geosystems, 14(2): 292-316. doi: 10.1002/ggge.20060

    [20]

    Goldberg K, Humayun M, 2010. The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(1-2): 175-183.

    [21]

    Grunow A M, Dalziel I W, Harrison T M, et al., 1992. Structural geology and geochronology of subduction complexes along the margin of Gondwanaland: New data from the Antarctic Peninsula and southernmost Andes[J]. 104(11): 1497−1514.

    [22]

    关有志, 1992. 科尔沁沙地的元素、粘土矿物与沉积环境[J]. 中国沙漠, 12(1): 9

    Guan Y Z, 1992. The Element, Clay Mineral and Depositional Environment in Horqin Sand Land[J]. Journal of Desert Research, 12(1): 9.

    [23]

    Hansen T A, Kelley P H, Haasl D M, et al. , 2004. Paleoecological patterns in molluscan extinctions and recoveries: comparison of the Cretaceous-Paleogene and Eocene-Oligocene extinctions in North America[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 214(3): 233-242.

    [24]

    Han Z, Sinclair H D, Li Y, et al. , 2019. Internal drainage has sustained low-relief Tibetan landscapes since the early Miocene[J]. Geophysical Research Letters, 46(15): 8741-8752. doi: 10.1029/2019GL083019

    [25]

    Hartenberger J L, 1998. Description de la radiation des Rodentia(Mammalia) du Paléocène supérieur au Miocène;incidences phylogénétiques[J]. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 326(6): 439-444.

    [26]

    侯明才, 江文剑, 倪师军, 等, 2016. 伊犁盆地南缘中下侏罗统碎屑岩地球化学特征及对物源制约[J]. 地质学报, 90(12): 3337-3351

    Hou M C, Jiang W J, Ni S J, et al. , 2016. Geochemical Characteristic of the Lower and Middle Jurassic Clastic Rocks in the Southern Margin of the Yili Basin, Xinjiang and its Constraints on Provenance[J]. Acta Geologica Sinica, 90(12): 3337-3351.

    [27]

    胡修棉, 王建刚, 安慰, 等, 2017. 利用沉积记录精确约束印度-亚洲大陆碰撞时间与过程[J]. 中国科学: 地球科学, 47(3): 261-283

    Hu X M, Wang J G, An W, et al. , 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record[J]. Scientia Sinica(Terrae), 47(3): 261-283.

    [28]

    Iqbal S, Wagreich M, Kuerschner W M, et al. , 2019. Hot-house climate during the Triassic/Jurassic transition: The evidence of climate change from the southern hemisphere(Salt Range, Pakistan)[J]. Global and Planetary Change, 172: 15-32. doi: 10.1016/j.gloplacha.2018.09.008

    [29]

    Jiang H, Guo G, Cai X, et al. , 2016. Geochemical evidence of windblown origin of the Late Cenozoic lacustrine sediments in Beijing and implications for weathering and climate change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 446: 32-43.

    [30]

    Kamp P C, Leake B E, 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 76(4): 411-449. doi: 10.1017/S0263593300010646

    [31]

    Lasaga A C, Soler J M, Ganor J, et al. , 1994. Chemical weathering rate laws and global geochemical cycles[J]. Geochimica et Cosmochimica Acta, 58(10): 2361-2386. doi: 10.1016/0016-7037(94)90016-7

    [32]

    Lear C H, Bailey T R, Pearson P N, et al. , 2008. Cooling and ice growth across the Eocene-Oligocene transition[J]. Geology, 36(3): 251-254. doi: 10.1130/G24584A.1

    [33]

    李吉均, 方小敏, 1998. 青藏高原隆起与环境变化研究[J]. 科学通报, 43(15): 1568-1574

    Li J J, Fang X M, 1998. Study on uplift of Tibet plateau and environmental change[J]. Chinese Science Bulletin, 43(15): 1568-1574.

    [34]

    刘东生, 郑绵平, 郭正堂, 1998. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究, 18(3): 194-204 doi: 10.3321/j.issn:1001-7410.1998.03.002

    Liu D S, Zheng M P, Guo Z T, 1998. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in asia[J]. Quaternary Sciences, 18(3): 194-204. doi: 10.3321/j.issn:1001-7410.1998.03.002

    [35]

    Liu Z, Pagani M, Zinniker D, et al. , 2009. Global cooling during the Eocene-Oligocene climate transition[J]. Science, 323(5918): 1187-1190. doi: 10.1126/science.1166368

    [36]

    刘志飞, 拓守廷, 赵泉鸿, 等, 2004. 南大西洋深水渐新世初大冰期事件[J]. 科学通报, 49(17): 1793-1800 doi: 10.1360/csb2004-49-17-1793

    Liu Z F, Tuo S T, Zhao Q H, 2004. Deep water events in the South Atlantic during the early Oligocene[J]. Chinese Science Bulletin, 49(17): 1793-1800. doi: 10.1360/csb2004-49-17-1793

    [37]

    Liu Z H, Algeo T J, Guo X, et al. , 2017. Paleo-environmental cyclicity in the Early Silurian Yangtze Sea(South China): Tectonic or glacio-eustatic control?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 59-76.

    [38]

    Lyons T W, Werne J P, Hollander D J, et al. , 2003. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela[J]. Chemical Geology, 195(1-4): 131-157. doi: 10.1016/S0009-2541(02)00392-3

    [39]

    马孝达, 2003. 西藏中部若干地层问题讨论[J]. 地质通报, 22(9): 695-698

    Ma X D, 2003. A discussion of some problems of stratigraphy in central Tibet[J]. Geological Bulletin of China, 22(9): 695-698.

    [40]

    Mao Z, Meng Q, Fang X, et al. , 2019. Recognition of tuffs in the middle-upper Dingqinghu Fm. , Lunpola Basin, central Tibetan Plateau: Constraints on stratigraphic age and implications for paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 525: 44-56.

    [41]

    McLennan S M, 1993. Weathering and global denudation[J]. Journal of Geology, 101(2): 295-303. doi: 10.1086/648222

    [42]

    Meng J, McKenna M C, 1998. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau[J]. Nature: International weekly journal of science, 394(6691): 364-367.

    [43]

    Meng Q, Liu Z, Bruch A A, et al. , 2012. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China[J]. Journal of Asian Earth Sciences, 45: 95-105. doi: 10.1016/j.jseaes.2011.09.021

    [44]

    苗运法, 方小敏, 宋之琛, 等, 2008. 青藏高原北部始新世孢粉记录与古环境变化[J]. 中国科学(D辑: 地球科学), 38(2): 187-196

    Miao Y F, Fang X M, Song Z C, et al. , 2008. Eocene sporopollen records and paleoenvironmental changes in the northern Qinghai-Tibet Plateau[J]. Science China(Seri. D), 38(2): 187-196.

    [45]

    Miller K G, Wright J D, Fairbanks R G, 1991. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion[J]. Journal of Geophysical Research: Solid Earth, 96(B4): 6829–6848. doi: 10.1029/90JB02015

    [46]

    Miller K G, Browning J V, Aubry M P, et al. , 2008. Eocene-Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama[J]. Geological Society of America Bulletin, 120(1-2): 34-53. doi: 10.1130/B26105.1

    [47]

    Montero-Serrano J C, Föllmi K B, Adatte T, et al. , 2015. Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 429: 83-99.

    [48]

    Nesbitt H W, YoungG M, 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715-717. doi: 10.1038/299715a0

    [49]

    Nesbitt H W, Young G M, 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3

    [50]

    Pagani M, Zachos J C, Freeman K H, et al. , 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science, 309(5734): 600-603. doi: 10.1126/science.1110063

    [51]

    Pei J, Sun Z, Wang X, et al. , 2009. Evidence for Tibetan plateau uplift in Qaidam Basin before Eocene-Oligocene boundary and its climatic implications[J]. Journal of Earth Science, 20(2): 430-437. doi: 10.1007/s12583-009-0035-y

    [52]

    Roser B P, Korsch R J, 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 67(1-2): 119-139. doi: 10.1016/0009-2541(88)90010-1

    [53]

    Ridgway K D, Sweet A R, 1995. Climatically induced floristic changes across the Eocene–Oligocene transition in the northern high latitudes, Yukon Territory, Canada[J]. Geological Society of America Bulletin, 107(6): 676-696. doi: 10.1130/0016-7606(1995)107<0676:CIFCAT>2.3.CO;2

    [54]

    Schouten S, Eldrett J, Greenwood D R, et al. , 2008. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids[J]. Geology, 36(2): 147-150. doi: 10.1130/G24332A.1

    [55]

    施雅风, 李吉均, 李炳元, 等, 1999. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 54(1): 10-21

    Shi Y F, Li J J, Li B Y, et al. , 1999. Uplift of the Qinghai—Xizang (Tibetan) plateau and east asia environmental change during late Cenozoic[J]. Acta Geographica Sinica, 54(1): 10-21.

    [56]

    孙镇城, 杨藩, 张枝焕, 等, 1997. 中国新生代咸化湖泊沉积环境与油气生成[M]. 中国石油大学出版社: 79−84

    Sun Z C, Yang F, Zhang Z H, et al., 1997. Sedimentary environment and hydrocarbon generation of Cenozoic saline lakes in China[M]. China University of Petroleum Press: 79−84.

    [57]

    Sun J, Ni X, Bi S, et al. , 2014. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia[J]. Scientific Reports, 4(1): 7463. doi: 10.1038/srep07463

    [58]

    曲永贵, 王永胜, 段建翔, 等, 2011. 中华人民共和国区域地质调查报告(1: 250000): 多巴区幅(H45C001004)[M]. 武汉: 中国地质大学出版社.

    Qu Y G, Wang Y S, Duan J X, et al., 2011. (1: 250000) regional geological survey report of the People’s Republic of China (Duoba sheet, No: H45C001004)[M]. Wuhan: China University of Geosciences Press.

    [59]

    唐赫, 2020. 始新世−渐新世之交青藏高原东南缘的植被和气候演变[D]. 中国科学院大学.

    Tang H, 2020. Vegetation and Climate Evolution in the Southeast Margin of the Qinghai−Tibet Plateau at the Turn of Eocene−Oligocene[D]. University of Chinese Academy of Sciences.

    [60]

    Tapponnier P, Zhiqin X, Roger F, et al. , 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978

    [61]

    Tripati A, Darby D, 2018. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice[J]. Nature communications, 9(1): 1038. doi: 10.1038/s41467-018-03180-5

    [62]

    von Eynatten H, Barceló-Vidal C, Pawlowsky-Glahn V, 2003. Modelling compositional change: the example of chemical weathering of granitoid rocks[J]. Mathematical Geology, 35: 231-251. doi: 10.1023/A:1023835513705

    [63]

    Wang C, Dai J, Zhao X, et al. , 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 621: 1-43. doi: 10.1016/j.tecto.2014.01.036

    [64]

    Wang C, Zhao X, Liu Z, et al. , 2008. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Science, 105(13): 4987-4992. doi: 10.1073/pnas.0703595105

    [65]

    王永胜, 张树歧, 谢元和, 等, 2012. 中华人民共和国区域地质调查报告(1: 250000): 昂达尔错幅(I45C004004)[M]. 武汉: 中国地质大学出版社.

    Wang Y S, Zhang S Q, Xie Y H, et al., 2012. 1: 250000 regional geological survey report of the People’s Republic of China (Angdarco sheet, No: I45C004004)[M]. Wuhan: China University of Geosciences Press.

    [66]

    王开发, 杨蕉文, 李哲, 等, 1975. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理[J]. 地质科学, 10(4): 366-374

    10(4): 366-374.10(4): 366-374. Wang K F, Yang J W, Li Z, et al. , 1975. On the Tertiary sporo-pollen assemblages from Lunpola Basin of Xizang, China and their palaeogeographic significance[J]. Scientia Geologica Sinica, 10(4): 366-374.

    [67]

    汪品先, 2009. 全球季风的地质演变[J]. 科学通报, 54(5): 535-556 doi: 10.1360/csb2009-54-5-535

    Wang P X, 2009. Global monsoon in a geological perspective[J]. Chinese Science Bulletin, 54(5): 535-556. doi: 10.1360/csb2009-54-5-535

    [68]

    韦利杰, 刘小汉, 李广伟, 等, 2015. 藏南江孜地区古近纪甲查拉组孢粉组合及古环境分析[J]. 微体古生物学报, 32(3): 255-268

    Wei L J, Liu X H, Li G W, et al. , 2015. Paleogene palynological assemblages and paleoenvironmental analysis from gyachala formation in the gyangzi area, southern Tibet, China[J]. Acta Micropalaeontologica Sinica, 32(3): 255-268.

    [69]

    Wronkiewicz D J, Condie K C, 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance[J]. Geochimica et Cosmochimica Acta, 51(9): 2401-2416. doi: 10.1016/0016-7037(87)90293-6

    [70]

    夏位国, 1986. 西藏班戈县伦坡拉盆地伦坡拉群的轮藻化石[J]. 中国地质科学院成都地质矿产研究所文集, 61-68

    Xia W G, 1986. Fossil charophytes from Lunpola Group in Lunpola Basin, Bangor County, Tibet[J]. Bulletin of the Chengdu Institute of Geology and Mineral Resources, 61-68.

    [71]

    徐小涛, 邵龙义, 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报, 20(3): 515-522

    Xu X T, Shao L Y, 2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography, 20(3): 515-522.

    [72]

    徐正余, 1980. 西藏伦坡拉盆地第三系及其含油性[J]. 石油与天然气地质, 1(2): 153-158

    Xu Z Y, 1980. The Tertiaryand its petroleum potential in the Lunpola Basin, Tibet[J]. Oil & Gas Geology, 1(2): 153-158.

    [73]

    Yang J, Cawood P A, Du Y, et al. , 2016. Reconstructing Early Permian tropical climates from chemical weathering indices[J]. Bulletin, 128(5-6): 739-751.

    [74]

    Young G M, Wayne Nesbitt H, 1999. Paleoclimatology and provenance of the glaciogenic Gowganda Formation(Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach[J]. Geological Society of America Bulletin, 111(2): 264-274. doi: 10.1130/0016-7606(1999)111<0264:PAPOTG>2.3.CO;2

    [75]

    Yuan Q, Barbolini N, Rydin C, et al. , 2020. Aridification signatures from fossil pollen indicate a drying climate in east-central Tibet during the late Eocene[J]. Climate of the Past, 16(6): 2255-2273. doi: 10.5194/cp-16-2255-2020

    [76]

    Zanazzi A, Kohn M J, MacFadden B J, et al. , 2007. Large temperature drop across the Eocene-Oligocene transition in central North America[J]. Nature, 445: 639-642. doi: 10.1038/nature05551

    [77]

    Zachos J, Pagani M, Sloan L, et al. , 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686-693. doi: 10.1126/science.1059412

    [78]

    Zachos J C, Flower B P, Paul H, 1997. Orbitally paced climate oscillations across the Oligocene /Miocene boundary[J]. Nature, 388(6642): 567-570. doi: 10.1038/41528

    [79]

    张克信, 王国灿, 洪汉烈, 等, 2013. 青藏高原新生代隆升研究现状[J]. 地质通报, 32(1): 1-18

    Zhang K X, Wang G C, Hong H L, et al. , 2013. The study of the Cenozoic uplift in the Tibetan Plateau: A review[J]. Geological Bulletin of China, 32(1): 1-18.

  • 加载中

(6)

计量
  • 文章访问数:  643
  • PDF下载数:  106
  • 施引文献:  0
出版历程
收稿日期:  2022-07-24
修回日期:  2022-11-25
录用日期:  2022-11-25
刊出日期:  2023-09-30

目录