西藏伦坡拉盆地晚始新世—早渐新世黏土矿物特征及古气候意义

路畅, 夏国清, 陈云, 吴劲宣, 包万铖, 樊秋爽, 石柱, 郝夏炜. 2023. 西藏伦坡拉盆地晚始新世—早渐新世黏土矿物特征及古气候意义. 沉积与特提斯地质, 43(3): 565-579. doi: 10.19826/j.cnki.1009-3850.2023.02021
引用本文: 路畅, 夏国清, 陈云, 吴劲宣, 包万铖, 樊秋爽, 石柱, 郝夏炜. 2023. 西藏伦坡拉盆地晚始新世—早渐新世黏土矿物特征及古气候意义. 沉积与特提斯地质, 43(3): 565-579. doi: 10.19826/j.cnki.1009-3850.2023.02021
LU Chang, XIA Guoqing, CHEN Yun, WU Jinxuan, BAO Wancheng, FAN Qiushuang, SHI Zhu, HAO Xiawei. 2023. Late Eocene-Early Oligocene clay mineral characteristics and paleoclimate significance in Lunpola Basin, Tibet. Sedimentary Geology and Tethyan Geology, 43(3): 565-579. doi: 10.19826/j.cnki.1009-3850.2023.02021
Citation: LU Chang, XIA Guoqing, CHEN Yun, WU Jinxuan, BAO Wancheng, FAN Qiushuang, SHI Zhu, HAO Xiawei. 2023. Late Eocene-Early Oligocene clay mineral characteristics and paleoclimate significance in Lunpola Basin, Tibet. Sedimentary Geology and Tethyan Geology, 43(3): 565-579. doi: 10.19826/j.cnki.1009-3850.2023.02021

西藏伦坡拉盆地晚始新世—早渐新世黏土矿物特征及古气候意义

  • 基金项目: 青藏高原新生代湖相碳酸盐碳氧同位素特征与古环境意义(41972115)资助
详细信息
    作者简介: 路畅(1998—),女,硕士研究生,地质学专业。E-mail:cdut_lu2022@163.com
    通讯作者: 夏国清(1982—),男,博士,教授,硕士生导师,主要从事沉积学、沉积盆地分析的教学和科研工作。E-mail:xiaguoqing2012@cdut.cn
  • 中图分类号: P532

Late Eocene-Early Oligocene clay mineral characteristics and paleoclimate significance in Lunpola Basin, Tibet

More Information
  • 始新世—渐新世是新生代气候从“温室”向“冰室”转变的重要节点,也是青藏高原及邻区气候格局发生重大变革的关键时期。为了重建高原中部腹地始新世—渐新世的古气候演变特征,探讨古气候变化的控制因素,利用X射线衍射分析对高原中部伦坡拉盆地382道班剖面的黏土矿物特征进行了综合研究,结果显示,伦坡拉盆地在始新世—渐新世牛堡组二段沉积的黏土矿物主要以伊利石为主,伊/蒙混层次之,高岭石与绿泥石含量极少,蒙脱石仅出现在极少样品中。黏土矿物类型及组合特征指示伦坡拉盆地在该时期整体处于寒冷干旱的气候条件,但在长周期趋势下伊利石相对含量逐渐减少,伊/蒙混层逐渐增多,显示出青藏高原中部地区的气候系统在晚始新世—早渐新世时期存在向更加湿润的气候条件转变,这种气候系统的改变可能与南亚季风在晚始新世的演化所带来的更多水汽条件和青藏高原中部中央分水岭的形成有关,但在始新世与渐新世之交,伊利石含量陡然增多,而伊/蒙混层含量则减少,且两者频繁波动,这反映了该盆地在EOT时期受到全球降温的影响。

  • 加载中
  • 图 1  青藏高原沉积盆地分布及伦坡拉盆地位置图(据Xia et al., 2021和中国石油化工股份有限公司勘探南方分公司,2012修改)

    Figure 1. 

    图 2  研究区地质简图(a)与剖面特征、采样位置(b-c)(据曲永贵等, 2011; 王永胜等, 2012; 陈玉禄等, 2015; Fang et al., 2020修改)

    Figure 2. 

    图 3  伦坡拉盆地382道班剖面典型样品X射线衍射图谱

    Figure 3. 

    图 4  伦坡拉盆地典型剖面地层对比与382道班剖面孢粉特征(达玉剖面资料据Fang et al., 2020修改,标准极性柱采用GPTS,2012)

    Figure 4. 

    图 5  黏土矿物转化过程示意图 (据孙庆峰等, 2011修改)

    Figure 5. 

    图 6  伦坡拉盆地382道班剖面晚始新世到早渐新世黏土矿物特征及深海氧同位素变化曲线

    Figure 6. 

    图 7  青藏高原及周缘地区现代季风区(a; 据Lu et al., 2020修改,地形数据来源于奥维互动地图)和晚始新世古地貌与古气候带分布图(b; 据Fang et al., 2021修改)

    Figure 7. 

    表 1  伦坡拉盆地382道班剖面黏土矿物含量测试结果(%)

    Table 1.  Test results of clay mineral content of 382 Daoban section in Lunpola Basin (%)

    编号岩性黏土矿物含量伊利石高岭石绿泥石蒙脱石伊/蒙混层伊利石结晶度编号岩性黏土矿物含量伊利石高岭石绿泥石蒙脱石伊/蒙混层伊利石结晶度
    ZP-0 白云质泥岩 41.67 91 9 0.47 ZP-22-1 白云质泥岩 25.30 17 83 0.39
    ZP-01 泥质白云岩 17.41 95 5 0.40 SL74 泥质白云岩 3.65 84 16 0.40
    ZP-02 泥质白云岩 11.43 45 9 46 0.35 SL70 白云质泥岩 16.88 79 22 0.47
    ZP-03-1 白云质泥岩 27.71 83 2 14 0.45 SL67 泥质白云岩 3.01 69 31 0.40
    ZP-03 泥质白云岩 15.80 72 28 0.33 SL63 泥质白云岩 3.24 45 3 52 0.32
    ZP-04 泥质白云岩 17.42 81 6 0.43 SL57 白云质泥岩 24.80 63 37 0.48
    ZP-05 泥质白云岩 16.29 50 2 48 0.51 ZP-22 泥质白云岩 7.60 75 3 23 0.44
    ZP-06-1 白云质泥岩 21.58 82 5 13 0.54 SL49 泥质白云岩 12.34 69 2 29 0.44
    ZP-06 泥质白云岩 21.61 87 1 0.49 ZP-23-2 白云质泥岩 22.84 20 80 0.41
    ZP-07-1 白云质泥岩 34.07 80 20 0.51 ZP-23 泥质白云岩 7.56 21 79 0.38
    ZP-07 泥质白云岩 22.89 80 2 17 0.47 ZP-24-1 白云质泥岩 27.52 16 84 0.46
    ZP-08-1 白云质泥岩 33.28 71 29 0.53 SL41 白云质泥岩 16.06 60 40 0.46
    ZP-08 泥质白云岩 14.22 70 3 27 0.34 ZP-25-1 白云质泥岩 64.43 24 1 75 0.39
    ZP-09 泥质白云岩 14.62 77 23 0.44 ZP-25 泥质白云岩 11.12 16 84 0.35
    ZP-10-1 白云质泥岩 21.39 78 22 0.53 SL33 泥质白云岩 4.64 48 52 0.47
    ZP-10 泥质白云岩 7.96 79 21 0.33 ZP-26-2 白云质泥岩 14.59 75 8 3 15 0.49
    ZP-11 泥质白云岩 15.70 81 19 0.39 ZP-26 泥质白云岩 7.38 26 74 0.38
    ZP-12-1 白云质泥岩 22.15 81 1 1 17 0.53 ZP-27-1 白云质泥岩 40.13 32 1 67 0.41
    ZP-12-2 白云质泥岩 31.36 79 21 0.51 ZP-27 泥质白云岩 6.03 83 17 0.31
    ZP-12 泥质白云岩 15.05 50 21 5 24 0.36 ZP-28-1 白云质泥岩 19.88 29 2 69 0.39
    ZP-13-1 白云质泥岩 16.05 64 8 1 27 0.44 ZP-28 泥质白云岩 12.30 38 62 0.43
    ZP-13 白云质泥岩 23.71 64 36 0.51 ZP-29-1 白云质泥岩 29.27 25 75 0.35
    ZP-14 泥质白云岩 11.09 68 4 28 0.45 ZP-29 泥质白云岩 19.98 36 64 0.37
    ZP-15-2 白云质泥岩 26.57 55 4 41 0.48 ZP-30-1 白云质泥岩 30.63 25 75 0.44
    ZP-15 泥质白云岩 12.12 59 41 0.49 ZP-30 泥质白云岩 26.69 40 60 0.41
    ZP-16 泥质白云岩 14.40 55 5 40 0.39 ZP-31-1 白云质泥岩 22.38 33 4 63 0.40
    ZP-17-1 白云质泥岩 26.46 43 1 56 0.53 ZP-31 泥质白云岩 22.59 37 4 60 0.40
    ZP-17 泥质白云岩 14.27 72 28 0.47 ZP-32-1 白云质泥岩 29.95 19 3 78 0.39
    ZP-18 泥质白云岩 9.37 53 47 0.39 ZP-32 泥质白云岩 35.19 24 1 3 72 0.40
    SL112 白云质泥岩 28.91 47 53 0.43 ZP-33-1 白云质泥岩 43.63 24 2 75 0.46
    SL106 白云质泥岩 16.04 53 47 0.47 ZP-33 泥质白云岩 15.37 22 2 76 0.41
    ZP-19-1 白云质泥岩 23.37 13 2 1 84 0.43 ZP-34-1 白云质泥岩 30.31 9 1 90 0.34
    ZP-19 泥质白云岩 7.95 82 18 0.36 ZP-34 泥质白云岩 3.15 5 95 0.37
    SL99 白云质泥岩 24.63 29 71 0.53 ZP-35-1 白云质泥岩 19.53 19 2 79 0.40
    SL91 白云质泥岩 27.53 43 57 0.43 ZP-35 泥质白云岩 36.78 24 3 73 0.43
    ZP-20 泥质白云岩 14.74 17 83 0.43 ZP-36-1 泥质白云岩 34.35 30 4 66 0.40
    SL85 泥质白云岩 3.88 89 11 0.34 ZP-36 白云质泥岩 58.01 32 5 63 0.34
    ZP-21-1 白云质泥岩 23.78 71 29 0.46 ZP-37-1 泥质白云岩 26.06 46 3 51 0.41
    SL80 泥质白云岩 8.53 100 0.29 ZP-37 泥质白云岩 3.15 56 4 40 0.36
    ZP-21 泥质白云岩 11.41 23 77 0.40 ZP-38-1 白云质泥岩 36.90 47 53 0.48
    SL77 泥质白云岩 8.03 46 54 0.47 ZP-38 泥质白云岩 8.98 60 40 0.49
    下载: 导出CSV
  • [1]

    Anagnostou E, John E H, Edgar K M, et al. , 2016. Changing atmospheric CO2 concentration was the primary driver of early cenozoic climate[J]. Nature, 533(7603): 380-384. doi: 10.1038/nature17423

    [2]

    Ao H, Roberts A P, Dekkers M J, et al. , 2016. Late miocene–pliocene asian monsoon intensification linked to antarctic ice-sheet growth[J]. Earth and Planetary Science Letters, 444: 75-87. doi: 10.1016/j.jpgl.2016.03.028

    [3]

    Biscaye P E, 1965. Mineralogy and sedimentation of recent deep-sea clay in the atlantic ocean and adjacent seas and oceans[J]. GSA Bulletin, 76(7): 803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    [4]

    Caves J K, Winnick M J, Graham S A, et al. , 2015. Role of the westerlies in central asia climate over the cenozoic[J]. Earth and Planetary Science Letters, 428: 33-43. doi: 10.1016/j.jpgl.2015.07.023

    [5]

    Caves Rugenstein J K, Chamberlain C P, 2018. The evolution of hydroclimate in asia over the cenozoic: a stable-isotope perspective[J]. Earth-Science Reviews, 185: 1129-1156. doi: 10.1016/j.earscirev.2018.09.003

    [6]

    Chamley H, 1989. Clay sedimentology[M]. erlin: Spring−Verhg.

    [7]

    陈涛, 王欢, 张祖青, 等, 2003. 粘土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志, 22(4): 416-420 doi: 10.3969/j.issn.1000-6524.2003.04.022

    Chen T, Wang H, Zhang Z Q, et al. , 2003. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica Et Mineralogica, 22(4): 416-420. doi: 10.3969/j.issn.1000-6524.2003.04.022

    [8]

    陈玉禄, 陈国荣, 张宽忠, 等, 2015. 中华人民共和国区域地质调查报告(1: 250000): 班戈县幅(H46C001001)[M]. 武汉: 中国地质大学出版社, 253.

    Chen Y L, Chen G R, Zhang K Z, et al. , 2015. 1: 250000 regional geological survey report of the people’s Republic of China (Baingoin Sheet, No: H46C001001)[M]. Wuhan: China University of Geosciences Press.

    [9]

    程峰, 2018. 中国南方更新世红土沉积物的特征及其物源研究[D]. 北京: 中国地质大学.

    Cheng F, 2018. Study on characteristics and source provenance of the Pleistocene Red Earth Sediments in southern China[D]. Beijing: China University of Geosciences.

    [10]

    Coxall H K, Pearson P N, 2007. The eocene−oligocene transition[J]. Geological Society London Special Publications. 1256(1) 351−387.

    [11]

    Cramwinckel M J, Huber M, Kocken I J, et al. , 2018. Synchronous tropical and polar temperature evolution in the eocene[J]. Nature, 559(7714): 382-386. doi: 10.1038/s41586-018-0272-2

    [12]

    Deng T, Wang S, Xie G, et al. , 2012. A mammalian fossil from the Dingqing Formation in the Lunpola basin, northern tibet, and its relevance to age and paleo-altimetry[J]. Chinese Science Bulletin, 57(2-3): 261-269. doi: 10.1007/s11434-011-4773-8

    [13]

    翟富荣, 梁帅, 戴慧敏, 2020. 东北黑土地地球化学调查研究进展与展望[J]. 地质与资源, 29(6): 503-509 doi: 10.13686/j.cnki.dzyzy.2020.06.001

    Zhai F R, Liang S, Dai H M, 2020. Geochemical Survey of Black Land in Northeast China: Progress and Prospect[J]. Geology and Resources, 29(6): 503-509. doi: 10.13686/j.cnki.dzyzy.2020.06.001

    [14]

    Ding L, Xu Q, Yue Y, et al. , 2014. The andean-type gangdese mountains: paleoelevation record from the paleocene–eocene Linzhou basin[J]. Earth and Planetary Science Letters, 392: 250-264. doi: 10.1016/j.jpgl.2014.01.045

    [15]

    樊小龙, 余平辉, 曾亮, 等, 2016. 柴达木盆地新生界生物地层年代研究[J]. 微体古生物学报, 33(4): 363-378 doi: 10.16087/j.cnki.1000-0674.2016.04.011

    Fan X L, Yu P H, Zeng L, et al. , 2016. The biostratigraphic and chronological research of Cenozoic in the Qaidam Basin, Northwest China[J]. Acta Micropalaeontologica Sinica, 33(4): 363-378. doi: 10.16087/j.cnki.1000-0674.2016.04.011

    [16]

    Fang X, Dupont-Nivet G, Wang C, et al. , 2020. Revised chronology of central tibet uplift (lunpola basin)[J]. Science Advances, 6(50): a7298. doi: 10.1126/sciadv.aba7298

    [17]

    Fang X, Galy A, Yang Y, et al. , 2019. Paleogene global cooling–induced temperature feedback on chemical weathering, as recorded in the northern tibetan plateau[J]. Geology, 47(10): 992-996. doi: 10.1130/G46422.1

    [18]

    Fang X, Yan M, Zhang W, et al. , 2021. Paleogeography control of indian monsoon intensification and expansion at 41 Ma[J]. Science Bulletin, 66(22): 2320-2328. doi: 10.1016/j.scib.2021.07.023

    [19]

    方小敏, 宋春晖, 戴霜, 等, 2007. 青藏高原东北部阶段性变形隆升: 西宁、贵德盆地高精度磁性地层和盆地演化记录[J]. 地学前缘(1): 230−242

    Fang X M, Song C H, Dai S, et al. , 2007. Cenozoic deformation and uplift of the NE Qinghai−Tibet Plateau: from high−resolution magnetostratigraphy and basin evolution[J]. Earth Science Frontiers(1): 230−242.

    [20]

    高瑞祺, 朱宗浩, 郑国光, 等, 2000. 中国含油气盆地孢粉学[M]. 北京: 石油工业出版社.

    Gao R Q, Zhu Z H, Zheng G G, et al. , 2000. Palynology of petroliferous basins in China[M]. Beijing: Petroleum Industry Press.

    [21]

    韩文, 洪汉烈, 殷科, 2016. 红土中粘土矿物的转化方式和机理研究[C]//. 2016年全国矿物科学与工程学术研讨会, 40−41

    Han W, Hong H L, Yin K, 2016. Transformation mode and mechanism of clay minerals in Red Earth sediment[C] //. 2016 National Mineral Science and Engineering Symposium Abstract Collection, 40−41

    [22]

    Han Z, Sinclair H D, Li Y, et al. , 2019. Internal drainage has sustained low‐relief tibetan landscapes since the early miocene[J]. Geophysical Research Letters, 46(15): 8741-8752. doi: 10.1029/2019GL083019

    [23]

    He H, Sun J, Li Q, et al. , 2012. New age determination of the cenozoic Lunpola basin, central tibet[J]. Geological Magazine, 149(1): 141-145. doi: 10.1017/S0016756811000896

    [24]

    洪汉烈, 王朝文, 徐耀明, 等, 2010. 青藏高原新生代以来气候环境演化的粘土矿物学特征[J]. 地球科学(中国地质大学学报), 35(5): 728-736 doi: 10.3799/dqkx.2010.087

    Hong H L, Wang C W, Xu Y M, et al. , 2010. Paleoclimate Evolution of the Qinghai-Tibet Plateau since the Cenozoic[J]. Earth Science;Journal of China University of Geosciences, 35(5): 728-736. doi: 10.3799/dqkx.2010.087

    [25]

    黄镇国, 张伟强, 陈俊鸿, 1999. 中国红土与自然地带变迁[J]. 地理学报, 54(3): 193−203

    Huang Z G, Zhang W Q, Chen J H, 1999. The Change of Natural Zones and the Evolution of Red Earth in China. [J]. Acta Geographica Sinica54(3): 193−203.

    [26]

    Huber M, Goldner A, 2012. Eocene monsoons[J]. Journal of Asian Earth Sciences, 44: 3-23. doi: 10.1016/j.jseaes.2011.09.014

    [27]

    Hutchinson D K, Coxall H K, Lunt D J, et al. , 2021. The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons[J]. Climate of the Past, 17(1): 269-315. doi: 10.5194/cp-17-269-2021

    [28]

    江云水, 彭红瑞, 2017. 黏土矿物的x射线衍射分析[J]. 青岛科技大学学报(自然科学版), 38(S1): 139-141+146

    Jiang Y S, Peng H R, 2017. Analysis of Clay Minerals by X-ray Diffraction Method[J]. Journal of Qingdao University of Science and Technology; Natural Science Edition, 38(S1): 139-141+146.

    [29]

    Katz M E, Miller K G, Wright J D, et al. , 2008. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse[J]. Nature Geoscience, 1(5): 329-334. doi: 10.1038/ngeo179

    [30]

    Lear C H, Bailey T R, Pearson P N, et al. , 2008. Cooling and ice growth across the Eocene-Oligocene transition[J]. Geology (Boulder), 36(3): 251-254.

    [31]

    李明培, 邵龙义, 董大啸, 等, 2017. 鄂尔多斯盆地东缘泥质岩黏土矿物特征及其地质意义[J]. 煤田地质与勘探, 45(2): 39-44 doi: 10.3969/j.issn.1001-1986.2017.02.007

    Li M P, Shao L Y, Dong D X, et al. , 2017. Clay mineral characteristics and its geological significance in argillaceous rock in eastern margin of Ordos basin[J]. Coal Geology & Exploration, 45(2): 39-44. doi: 10.3969/j.issn.1001-1986.2017.02.007

    [32]

    梁鸿德, 申绍文, 刘香婷, 等, 1992. 辽河断陷火山岩地质年龄及地层时代[J]. 石油学报, 13(2): 35-41 doi: 10.7623/syxb199202007

    Liang H D, Shen S W, Liu X T, et al. , 1992. The age of the Vocanic Rocks and Their Geological Time in Liaohe Depression. [J]. Acta Petrolei Sinica, 13(2): 35-41. doi: 10.7623/syxb199202007

    [33]

    刘华华, 蒋富清, 周烨, 等, 2016. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 31(3): 286-297 doi: 10.11867/j.issn.1001-8166.2016.03.0286.

    Liu H H, Jiang F Q, Zhou Y, et al. , 2016. Provenance of clay minerals in the Amami Sankaku Basin and their paleoclimate implications since late Pleistocene[J]. Advances in Earth Science, 31(3): 286-297. doi: 10.11867/j.issn.1001-8166.2016.03.0286.

    [34]

    Licht A, van Cappelle M, Abels H A, et al. , 2014. Asian monsoons in a late eocene greenhouse world[J]. Nature, 513(7519): 501-506. doi: 10.1038/nature13704

    [35]

    刘晓东, Buwen D, Zhi-Yong Y, 等, 2019. 大陆漂移、高原隆升与新生代亚-非-澳洲季风区和干旱区演化[J]. 中国科学: 地球科学, 49(7): 1059-1081

    Liu X D, Buwen D, Zhi-Yong Y, et al. , 2019. Continental drift, plateau uplift, and the evolutions of monsoon and arid regions in Asia, Africa, and Australia during the Cenozoic[J]. Scientia Sinica(Terrae), 49(7): 1059-1081.

    [36]

    刘粤惠, 刘平安, 2003. X射线衍射分析原理与应用[M]. 北京: 化学工业出版社.

    Liu Y H, Liu P G, 2003. Principle and application of X−ray diffraction analysis[M]. Beijing: Chemical Industry Press.

    [37]

    隆浩, 王晨华, 刘勇平, 等, 2007. 粘土矿物在过去环境变化研究中的应用[J]. 盐湖研究, 15(2): 21-25 doi: 10.3969/j.issn.1008-858X.2007.02.004

    Long H, Wang C H, Liu Y P, et al. , 2007. Application of Clay Minerals in Paleoenviroment Research[J]. Journal of Salt Lake Research, 15(2): 21-25. doi: 10.3969/j.issn.1008-858X.2007.02.004

    [38]

    鲁春霞, 1997. 粘土矿物在古环境研究中的指示作用[J]. 中国沙漠, 17(4): 124-128 doi: 10.3321/j.issn:1000-694X.1997.04.004

    Lu C X, 1997. Clay Minerals as Indicators of Paleoenvironment[J]. Journal of Desert Research, 17(4): 124-128. doi: 10.3321/j.issn:1000-694X.1997.04.004

    [39]

    路晶芳, 宋博文, 陈锐明, 等, 2010. 柴达木盆地大柴旦地区大红沟古近纪孢粉组合序列与地层对比[J]. 地球科学(中国地质大学学报), 35(5): 839-848 doi: 10.3799/dqkx.2010.097

    Lu J F, Song B W, Chen R M, et al. , 2010. Palynological Assemblage of Eocene-Oiigocene Pollen and Their Biostratigraphic Correlation in Dahonggou, Daqaidam Area, Qaidam Basin[J]. Earth Science - Journal of China University of Geosciences, 35(5): 839-848. doi: 10.3799/dqkx.2010.097

    [40]

    Lu Y, Dewald N, Koutsodendris A, et al. , 2020. Sedimentological evidence for pronounced glacial‐interglacial climate fluctuations in NE tibet in the latest pliocene to early pleistocene[J]. Paleoceanography and Paleoclimatology, 35(5).

    [41]

    马鹏飞, 王立成, 冉波, 2013. 青藏高原中部新生代伦坡拉盆地沉降史分析[J]. 岩石学报, 29(3): 990-1002

    Ma P F, Wang L C, Ran B, 2013. Subsidence analysis of the Cenozoic Lunpola Basin, central Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 29(3): 990-1002.

    [42]

    Mao Z, Meng Q, Fang X, et al. , 2019. Recognition of tuffs in the Middle-Upper Dingqinghu Fm. , Lunpola basin, central tibetan plateau: constraints on stratigraphic age and implications for paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 525: 44-56.

    [43]

    Miller K G, Fairbanks R G, Mountain G S, 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion[J]. Paleoceanography, 2(1): 1−19.

    [44]

    Pagani M, Zachos J C, Freeman K H, et al. , 2005. Marked decline in atmospheric carbon dioxide concentrations during the paleogene[J]. Science, 309(5734): 600-603. doi: 10.1126/science.1110063

    [45]

    Pearson P N, Foster G L, Wade B S, 2009. Atmospheric carbon dioxide through the eocene–oligocene climate transition[J]. Nature, 461(7267): 1110-1113. doi: 10.1038/nature08447

    [46]

    Petercakova M, Snopkova P, 1983. Upper Eocene and Lower Oligocene sporomorphs of the Oravska vrchovina highlands[J]. Geologicky Sbornik, 34(2): 213-242.

    [47]

    蒲海波, 2011. 用 X 射线衍射分析鉴定粘土矿物的方法[J]. 勘察科学技术(5): 12−14

    Pu H B, 2011. Method of Identifying Clay Mineral by X−Ray Diffraction Analysis[J]. Site Investigation Science and Technology(5): 12−14.

    [48]

    青海石油管理局勘探开发研究院, 中国科学院南京地质古生物研究所, 1985. 柴达木盆地第三纪孢粉学研究[M]. 北京: 石油工业出版社.

    Exploration and Development Research Institute of Qinghai Petroleum Administration, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 1985. Tertiary palynology of Qaidam Basin[M]. Beijing: Petroleum Industry Press.

    [49]

    曲永贵, 王永胜, 段建翔, 等, 2011. 中华人民共和国区域地质调查报告(1: 250000): 多巴区幅(H45C001004)[R]. 武汉: 中国地质大学出版社有限责任公司.

    Qu Y G, Wang Y S, Duan J X, et al., 2011. 1: 250000 regional geological survey report of the people’s Republic of China (Duoba Sheet, No: H45C001004)[M]. Wuhan: China University of Geosciences Press.

    [50]

    任志勇, 2002. Pl19−3地区地层划分对比与古环境[D]. 北京: 中国石油勘探开发科学研究院.

    Ren Z Y, 2002. Stratigraphic division and correlation and paleoenvironment in Pl19−3 area[D]. Beijing: Research Institute of Petroleum Exploration and Development.

    [51]

    邵秋丽, 陈显尧, Huang Ruixin, 2013. 德雷克海峡的打开对海洋环流的影响: 基于一个箱式模型的研究[J]. 中国科学: 地球科学, 43(2): 181-191

    Shao Q L, Chen X Y, Huang R X, 2013. Effect of opening the Drake Passage on the oceanic general circulation: A box model study[J]. Science China: Earth Sciences, 43(2): 181-191.

    [52]

    师育新, 戴雪荣, 宋之光, 等, 2005. 我国不同气候带黄土中粘土矿物组合特征分析[J]. 沉积学报, 23(4): 690-695 doi: 10.3969/j.issn.1000-0550.2005.04.019

    Shi Y X, Dai X R, Song Z G, et al. , 2005. Characteristics of Clay Mineral Assemblages and Their Spatial Distribution of Chinese Loess in Different Climatic Zones[J]. Acta Sedimentologica Sinica, 23(4): 690-695. doi: 10.3969/j.issn.1000-0550.2005.04.019

    [53]

    Shukla A, Mehrotra R C, Spicer R A, et al. , 2014. Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: Evidence from the Gurha Mine, Rajasthan, India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 412: 187-198.

    [54]

    宋之琛, 王伟铭, 毛方园, 2008. 依据孢粉资料探讨我国西北地区第三纪时期的干旱化及其与季风的关系[J]. 古生物学报, 47(3): 265-272

    Song Z C, Wang W M, Mao F Y, 2008, Palynological Implications for Relationship brtween Aridification and Monsoom Climate in the Tertiary of NW China. [J]. Acta Palaeontologica Sinica, 47(3): 265-272.

    [55]

    宋之琛, 郑亚惠, 李曼英, 1999. 中国孢粉化石(第1卷)晚白垩世和第三纪孢粉[M]. 北京: 科学出版社.

    Song Z C, Zheng Y H, Li M Y, 1999. Palynology from China (Vol. 1) Late Cretaceous and Tertiary palynology[M]. Beijing: Science Press.

    [56]

    Spicer R A, 2017. Tibet, the Himalaya, Asian monsoons and biodiversity – in what ways are they related?[J]. Plant Diversity, 39(5): 233-244. doi: 10.1016/j.pld.2017.09.001

    [57]

    Su T, Farnsworth A, Spicer R A, et al. , 2019. No high tibetan plateau until the Neogene[J]. Science Advances, 5(3): v2189. doi: 10.1126/sciadv.aav2189

    [58]

    Su T, Spicer R A, Wu F, et al. , 2020. A middle Eocene lowland humid subtropical “shangri-la” ecosystem in central tibet[J]. Proceedings of the National Academy of Sciences, 117(52): 32989-32995. doi: 10.1073/pnas.2012647117

    [59]

    Sun J, Xu Q, Liu W, et al. , 2014. Palynological evidence for the latest oligocene−early miocene paleoelevation estimate in the lunpola basin, central tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 399: 21-30.

    [60]

    孙继敏, 刘卫国, 柳中晖, 等, 2017. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响[J]. 中国科学院院刊, 32(09): 951-958

    Sun J M, Liu W G, Liu Z H, et al. , 2017. Effects of the Uplift of the Tibetan Plateau and Retreat of Neotethys Ocean on the Stepwise Aridification of Mid-latitude Asian Interior[J]. Bulletin of Chinese Academy of Sciences, 32(09): 951-958.

    [61]

    孙庆峰, Christophe C, 陈发虎, 等, 2011. 气候环境变化研究中影响粘土矿物形成及其丰度因素的讨论[J]. 岩石矿物学杂志, 30(2): 291-300 doi: 10.3969/j.issn.1000-6524.2011.02.014

    Sun Q F, Christophe C, Chen F H, et al. , 2011. A discussion on the factors affecting formation and quantity of clay minerals in climatic and environmental researches[J]. Acta Petrologica Et Mineralogica, 30(2): 291-300. doi: 10.3969/j.issn.1000-6524.2011.02.014

    [62]

    孙素英, 1982. 宁夏同心地区渐新世孢粉组合[C]//. 中国地质科学院地质研究所文集(4), 130−141

    Sun S Y, 1982. Oligocene Spore and Pollen Assemblages from the Tongxin District of Ningxia[C] //. Proceedings of Institute of Geology, Chinese Academy of Geological Sciences(4), 130−141.

    [63]

    Svetlana P, Torsten U, Anna A, et al. , 2019. Early miocene flora of central kazakhstan (turgai plateau) and its paleoenvironmental implications[J]. Plant Diversity, 41(3): 183-197. doi: 10.1016/j.pld.2019.04.002

    [64]

    汤艳杰, 贾建业, 谢先德, 2002. 粘土矿物的环境意义[J]. 地学前缘, 9(2): 337-344 doi: 10.3321/j.issn:1005-2321.2002.02.011

    Tang Y, Jia J, Xie X, 2002. Environment significance of clay minerals[J]. Earth Science Frontiers, 9(2): 337-344. doi: 10.3321/j.issn:1005-2321.2002.02.011

    [65]

    Tessalina S, Talavera C, Pritchin M E, et al. , 2019. Biostratigraphy versus isotope geochronology: testing the urals island arc model[J]. Geoscience Frontiers, 10(1): 119-125. doi: 10.1016/j.gsf.2018.09.002

    [66]

    拓守廷, 刘志飞, 2003. 始新世—渐新世界线的全球气候事件: 从“温室”到“冰室”[J]. 地球科学进展, 18(5): 691-696 doi: 10.3321/j.issn:1001-8166.2003.05.008

    Tuo S T, Liu Z F, 2003. Global Climate Event at the Eocene-Oligocene Transition: from Greenhouse to Icehouse[J]. Advance in Earth Sciences, 18(5): 691-696. doi: 10.3321/j.issn:1001-8166.2003.05.008

    [67]

    Jones T D, Bown P R, Pearson P N, et al. , 2008. Major shifts in calcareous phytoplankton assemblages through the Eocene- Oligocene transition of tanzania and their implications for low-latitude primary production[J]. Paleoceanography and Paleoclimatology, 23(4): PA4204.

    [68]

    Wang B, Lin H, 2002. Rainy season of the asian–pacific summer monsoon[J]. Journal of Climate, 15(4): 386-398. doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2

    [69]

    王朝文, 洪汉烈, 向树元, 等, 2008. 东昆仑阿拉克湖早更新世沉积物黏土矿物特征及其古气候环境意义[J]. 地质科技情报, 27(5): 37-42

    Wang C W, Hong H L, Xiang S Y, et al. , 2008. Characteristics of clay minerals and their paleoclimatic indicator of early Pleistocene sediments from Alag Lake, East Kunlun[J]. Geological Science and Technology Information, 27(5): 37-42.

    [70]

    王粉丽, 洪汉烈, 殷科, 等, 2010. 循化盆地中新世沉积物粘土矿物的特征及其古气候指示[J]. 地球科学(中国地质大学学报), 35(5): 828-838 doi: 10.3799/dqkx.2010.096

    Wang F L, Hong H L, Yin K, et al. , 2010. Clay Mineralogy and Its Paleoclimatic Indicator of the Miocene Sediments of Xunhua Basin[J]. Earth Science(Journal of China University of Geosciences), 35(5): 828-838. doi: 10.3799/dqkx.2010.096

    [71]

    王河锦, 1998. 关于伊利石结晶度 kübler 指数的误差计算[J]. 地质论评, 44(3): 328-335

    Wang H J, 1998. On the Error Calculation of the kubler Index of Illite Crystallinity[J]. Geological Review, 44(3): 328-335.

    [72]

    王河锦, 周健, 1998. 关于伊利石结晶度诸指数的评价[J]. 岩石学报, 14(3): 128-138

    Wang H J, Zhou J, 1998. On the indices of illite crystallinity[J]. Acta Petrologica Sinica, 14(3): 128-138.

    [73]

    王河锦, 周钊, 王玲, 等, 2015. 伊利石结晶度 kübler 指数的校正与近变质带的确定[J]. 地质学报, 89(2): 406-411

    Wang H J, Zhou Z, Wang L, et al. , 2015. Calibration of Illite Crystallinity Kübler Index and Determination of Anchizone[J]. Acta Geologica Sinica, 89(2): 406-411.

    [74]

    王倩, 方宏树, 2016. 分析粘土矿物X射线衍射相定量分析方法与实验[J]. 当代化工研究(7): 146−147

    Wang Q, Fang H S, 2016. Analysis of Quantitative Phase Analysis and Experiment for Clay Mineral X−ray Diffraction[J]. Modern Chemical Research (7): 146−147.

    [75]

    王永胜, 张树歧, 谢元和, 等, 2012. 中华人民共和国区域地质调查报告(1: 250000): 昂达尔错幅(I45C004004)[M]. 武汉: 中国地质大学出版社.

    Wang Y S, Zhang S Q, Xie Y H, et al. , 2012. 1: 250000 regional geological survey report of the people’s Republic of China (Angdarco Sheet, No: I45C004004)[M]. Wuhan: China University of Geosciences Press.

    [76]

    韦利杰, 刘小汉, 严富华, 等, 2011. 西藏柳区砾岩地质时代厘定的微体古植物新证据及地质意义[J]. 中国科学: 地球科学, 41(10): 1424-1434

    Wei L J, Liu X H, Yan F H, et al. , 2011. Palynological evidence sheds new light on the age of the Liuqu Conglomerates in Tibet and its geological significance[J]. Scientia Sinica(Terrae), 41(10): 1424-1434.

    [77]

    Westerhold T, Marwan N, Drury A J, et al. , 2020. An astronomically dated record of earth’s climate and its predictability over the last 66 million years. [J]. Science, 369(6509): 1383-1387. doi: 10.1126/science.aba6853

    [78]

    吴海斌, 刘秀铭, 吕镔, 等, 2016. 中国黄土成因争论及其启示[J]. 亚热带资源与环境学报, 11(3): 38-45 doi: 10.3969/j.issn.1673-7105.2016.03.005

    Wu H B, Liu X M, Lyu B, et al. , 2016. Debates about the Origin of Loess and Their Significances[J]. Journal of Subtropical Resources and Environment, 11(3): 38-45. doi: 10.3969/j.issn.1673-7105.2016.03.005

    [79]

    武海燕, 任志勇, 刘长海, 等, 2013. 渤海海域前第三系烃源岩评价[J]. 重庆科技学院学报(自然科学版), 15(6): 18-20

    Wu H Y, Ren Z Y, Liu CH, et al. , 2013. Pre-Tertiary Bohai Sea Hydrocarbon Source Rock Evaluation[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 15(6): 18-20.

    [80]

    夏代祥, 刘世坤, 1997. 西藏自治区岩石地层[M]. 武汉: 中国地质大学出版社.

    Xia D X, Liu S K, 1997. lithostratigraphy in Tibet Autonomous Region[M]. Wuhan: China University of Geosciences Press.

    [81]

    Xia G, Wu C, López R, et al. , 2021. Eocene−Oligocene terrestrial cryospheric processes: bipolar glaciation and uplifted Tibet. PREPRINT (Version 1) available at Research Square.

    [82]

    肖国桥, 张仲石, 姚政权, 2012. 始新世—渐新世气候转变研究进展[J]. 地质论评, 58(1): 91-105 doi: 10.3969/j.issn.0371-5736.2012.01.009

    Xiao G Q, Hang Z S, Yao Z Q, 2012. The Eocene—Oligocene Climate Transition: Review of Recent Progress[J]. Geological Review, 58(1): 91-105. doi: 10.3969/j.issn.0371-5736.2012.01.009

    [83]

    Xiong Z, Ding L, Spicer R A, et al. , 2020. The early eocene rise of the gonjo basin, se tibet: from low desert to high forest[J]. Earth and Planetary Science Letters, 543: 116312. doi: 10.1016/j.jpgl.2020.116312

    [84]

    Xiong Z, Liu X, Ding L, et al. , 2022. The rise and demise of the paleogene central tibetan valley[J]. Science Advances, 8(6): j944.

    [85]

    徐宝亮, 李祥辉, 陈云华, 等, 2007. 中国“东部高原”东北部黏土矿物特征研究[J]. 四川地质学报, 27(3): 166-170 doi: 10.3969/j.issn.1006-0995.2007.03.004

    Xu B L, Li X H, Chen Y H, et al. , 2007. Clay Minerals in Northeast of the "Eastern Plateau", China[J]. Acta Geologica Sichuan, 27(3): 166-170. doi: 10.3969/j.issn.1006-0995.2007.03.004

    [86]

    Xu M, Chang C, Fu C, et al. , 2006. Steady decline of east Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed[J]. Journal of Geophysical Research, 111: D24111. doi: 10.1029/2006JD007337

    [87]

    Xu Q, Ding L, Zhang L, et al. , 2013. Paleogene high elevations in the Qiangtang terrane, central Tibetan plateau[J]. Earth and Planetary Science Letters, 362(1): 31-42.

    [88]

    Yang Y, Han W, Ye C, et al. , 2022. Trends and transitions in silicate weathering in the Asian interior (ne tibet) since 53 ma[J]. Frontiers in Earth Science, 10: 2296-6463.

    [89]

    叶程程, 2017. 柴达木盆地新生代化学风化的粘土矿物与地球化学记录[D]. 北京: 中国科学院大学.

    Ye C C, 2017. Clay minerals and geochemical records of Cenozoic chemical weathering in Qaidam Basin[D]. Beijing: University of the Chinese Academy of Sciences.

    [90]

    叶喜艳, 冯展涛, 彭廷江, 等, 2018. 兰州西津黄土-古土壤序列中黏土矿物特征[J]. 兰州大学学报(自然科学版), 54(1): 75-81

    Ye X Y, Feng Z T, Peng T J, 2018. Preliminary clay minerals on the Ioess-paleosol sequence in the Xijin core, Lanzhou[J]. Journal of Lanzhou University(Natural Sciences), 54(1): 75-81.

    [91]

    余仁哲, 2019. 近2000年来亚洲夏季风的变迁模式、全球联系及影响因素[D]. 兰州: 兰州大学.

    Yu R Z, 2019. The Variability Pattern, Global Linkage Andinfluencing Factors of Asian Summer Monsoon Over the Past 2000 Years[D]. Lanzhou: Lanzhou University.

    [92]

    Zachos J, Pagani M, Sloan L, et al. , 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686-693. doi: 10.1126/science.1059412

    [93]

    Zhang C, Guo Z, 2014. Clay mineral changes across the Eocene–Oligocene transition in the sedimentary sequence at Xining occurred prior to global cooling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 411: 18-29.

    [94]

    Zhang H, Griffiths M L, Huang J, et al. , 2016. Antarctic link with east asian summer monsoon variability during the heinrich stadial–bølling interstadial transition[J]. Earth and Planetary Science Letters, 453(1): 243-251.

    [95]

    张新荣, 焦洁钰, 2020. 黑土形成与演化研究现状[J]. 吉林大学学报(地球科学版), 50(2): 553-568

    Zhang X R, Jiao J Y, 2020. Formation and Evolution of Black Soil[J]. Journal of Jilin University(Earth Science Edition), 50(2): 553-568

    [96]

    Zhang S, Wang B, 2008. Global summer monsoon rainy seasons[J]. International Journal of Climatology, 28(12): 1563-1578. doi: 10.1002/joc.1659

    [97]

    赵杏媛, 张有瑜, 1990. 粘土矿物与粘土矿物分析[M]. 北京: 海洋出版社.

    Zhao X Y, Zhang Y Y, 1990. Analysis of clay minerals and clay minerals[M]. Beijing: China Ocean Press.

    [98]

    Zheng H, Yang Q, Cao S, et al. , 2022. From desert to monsoon: irreversible climatic transition at ~ 36 ma in southeastern tibetan plateau[J]. Progress in Earth and Planetary Science, 9(1): 1-14. doi: 10.1186/s40645-021-00461-4

    [99]

    郑家坚, 何希贤, 刘淑文, 等, 1999. 中国地层典: 第三系[M]. 北京: 地质出版社.

    Zheng J J, He X X, Liu S W, et al. , 1999 Chinese stratigraphic Classics: Tertiary System[M]. Beijing: Geology Press.

    [100]

    中国地质科学院地质研究所, 新疆石油管理局勘探开发研究所, 1990. 新疆北部二叠纪至第三纪地层及孢粉组合[M]. 北京: 中国环境科学出版社.

    The Institute of Geology, Chinese Academy of Geological Sciences, Exploration and Development Research Institute of Xinjiang Petroleum Administration, 1990. Permian to Tertiary strata and palynological assemblages in northern Xinjiang[M]. Beijing: China Environmental Science Pres.

    [101]

    朱照宇, 郑洪汉, 张国梅, 等, 1991. 华南热带红土期及风化矿物初步研究[J]. 第四纪研究, 11(1): 18-27 doi: 10.3321/j.issn:1001-7410.1991.01.003

    Zhu Z Y, Zheng H H, Zhang Guomei, et al. , 1991. The Developmental Stages of Red Soils and Their Weathering Minerals in the Tropics of South China. [J]. Quaternary Sciences, 11(1): 18-27. doi: 10.3321/j.issn:1001-7410.1991.01.003

    [102]

    左俊, 2016. 青藏高原东北缘尖扎盆地黏土矿物特征及其古环境意义[D]. 西安: 长安大学.

    Zuo J, 2016. Clay Mineral Characteristics of the Jianzha Basin in Northeastern Margin of the Tibet Plateau, and Its Environment Significance[D]. Xi’an: Chang’an University.

  • 加载中

(7)

(1)

计量
  • 文章访问数:  550
  • PDF下载数:  107
  • 施引文献:  0
出版历程
收稿日期:  2022-10-21
修回日期:  2022-12-06
录用日期:  2022-12-06
刊出日期:  2023-09-30

目录