青藏高原古近系牛堡组三段天文周期旋回分析及古湖平面演化研究:以尼玛盆地尼1井为例

陈云, 伊海生, 陈璐洁, 伍新和, 唐闻强, 汪锐, 杨芸, 张承志. 2023. 青藏高原古近系牛堡组三段天文周期旋回分析及古湖平面演化研究:以尼玛盆地尼1井为例. 沉积与特提斯地质, 43(3): 555-564. doi: 10.19826/j.cnki.1009-3850.2021.09003
引用本文: 陈云, 伊海生, 陈璐洁, 伍新和, 唐闻强, 汪锐, 杨芸, 张承志. 2023. 青藏高原古近系牛堡组三段天文周期旋回分析及古湖平面演化研究:以尼玛盆地尼1井为例. 沉积与特提斯地质, 43(3): 555-564. doi: 10.19826/j.cnki.1009-3850.2021.09003
CHEN Yun, YI Haisheng, CHEN Lujie, WU Xinhe, TANG Wenqiang, WANG Rui, YANG Yun, ZHANG Cheng-zhi. 2023. Astronomical cycles analysis and paleolake level evolution characteristics of Paleogene upper Niubao Formation: A case study of the Ni-1 well in Tibetan Plateau. Sedimentary Geology and Tethyan Geology, 43(3): 555-564. doi: 10.19826/j.cnki.1009-3850.2021.09003
Citation: CHEN Yun, YI Haisheng, CHEN Lujie, WU Xinhe, TANG Wenqiang, WANG Rui, YANG Yun, ZHANG Cheng-zhi. 2023. Astronomical cycles analysis and paleolake level evolution characteristics of Paleogene upper Niubao Formation: A case study of the Ni-1 well in Tibetan Plateau. Sedimentary Geology and Tethyan Geology, 43(3): 555-564. doi: 10.19826/j.cnki.1009-3850.2021.09003

青藏高原古近系牛堡组三段天文周期旋回分析及古湖平面演化研究:以尼玛盆地尼1井为例

  • 基金项目: 国家自然科学基金项目(4157020610)
详细信息
    作者简介: 陈云(1991—),博士,主要从事沉积学及古环境方面的研究。E-mail:chenyun4619@163.com
  • 中图分类号: P532

Astronomical cycles analysis and paleolake level evolution characteristics of Paleogene upper Niubao Formation: A case study of the Ni-1 well in Tibetan Plateau

  • 青藏高原中部尼玛盆地是一个形成于班公湖-怒江缝合带之上的新生代陆相裂谷盆地。交通不便和勘探程度较低等因素导致其高精度沉积旋回特征和地层学一直鲜有研究。尼1井是盆地内第一口地质探井,通过对该井古近系牛堡组三段的自然伽马测井曲线进行频谱分析,证实了天文轨道周期对盆地内湖相地层的沉积具有显著影响。滤波分析显示牛堡组三段保存了41个短偏心率(~100 kyr)周期,76个斜率(~54 kyr)周期和178个岁差(~23 kyr)周期,平均沉积速率为92.03 m/Ma,沉积时限~4.1 Myr。此外,结合Fischer图解与总有机碳含量的变化趋势,确定牛堡组三段湖平面经历了1次长周期的升-降变化过程。综合分析,认为尼玛盆地优质烃源岩的形成主要受天文旋回周期影响下的湖平面变化所控制。

  • 加载中
  • 图 1  青藏高原盆地分布位置及研究区地层

    Figure 1. 

    图 2  尼玛盆地西部地区尼1井牛堡组三段综合柱状图

    Figure 2. 

    图 3  尼玛盆地西部地区牛堡组三段自然伽马曲线频谱分析

    Figure 3. 

    图 4  尼玛盆地西部牛堡组三段高分辨率天文年代标尺

    Figure 4. 

    图 5  尼玛盆地西部地区牛堡组三段Fischer图解频谱分析(左)及湖平面变化趋势图(右)

    Figure 5. 

    图 6  尼玛盆地西部地区牛堡组三段优质烃源岩发育模式图

    Figure 6. 

    表 1  尼玛盆地牛堡组三段自然伽马测井曲线频谱分析结果及比例关系

    Table 1.  Spectrum analysis results and proportional relations of natural gamma curve of upper Niubao Formation in Nyima Basin

    井号频率厚度/m厚度比值理论比值误差率轨道周期/kyr
    尼1井0.108759.19511/偏心率短周期100
    0.193635.1640.560.544.01%斜率长周期54
    0.278513.5910.390.414.76%斜率短周期41
    0.466842.1420.230.231.28%岁差长周期23
    0.578251.7290.190.191.02%岁差短周期19
    下载: 导出CSV
  • [1]

    Abels H A, Aziz H A, Krijgsman W, et al. , 2010. Long-period eccentricity control on sedimentary sequences in the continental Madrid Basin (middle Miocene, Spain) [J]. Earth & Planetaryence Letters, 289(1-2): 220-231.

    [2]

    Berber A, Loutre M F, Dehant V, 1989. Pre-Quaternary Milankovitch frequencies [J]. Nature, 342 (9): 133.

    [3]

    Calvert S E, 1987. Ocean graphic controls on the accumulation of organic matter in marine sediments [C]// Brook J, Fleet A J, Marine petroleum source rock. London: Blackwell Scientific, 137-151.

    [4]

    陈义才, 沈忠民, 罗小平, 2007. 石油与天然气有机地球化学 [M]. 北京: 科学出版社.

    Chen Y C, Shen Z M, Luo X P, 2007. Petroleum & Gas Organic Geochemistry [M]. Beijing: Science Press.

    [5]

    陈云, 2018. 西藏尼玛地区上侏罗统沙木罗组沉积特征及生烃潜力评价[D]. 成都理工大学.

    Chen Y, 2018. Sedimentary Characteristics and Evaluation of Hydrocarbon Potential of Upper Jurassic Shamuluo Formation in the Nima Area, Tibet [D]. Chengdu University of Technology.

    [6]

    程日辉, 王国栋, 王璞珺, 2008. 松辽盆地白垩系泉段—三嫩二段沉积旋回与米兰科维奇周期[J]. 地质学报, 82(1): 55-64

    Cheng R H, Wang G D, Wang P J. 2008. Sedimentary Cycles of the Cretaceous Quantou—Nenjiang Formations and Milankovitch Cycles of the South Hole of the SLCORE-Ⅰ in the Songliao Basin[J]. Acta Geologica Sinica, 82(1): 55-64.

    [7]

    Cluff R M, Barrows M H, 1982. Hydrocarbon generation and source rock evaluation (origin of petroleum III)[M]. Tulsa Oklahoma: American Association of Petroleum Geologists.

    [8]

    Decelles P G and Kapp P, 2007. Late Cretaceous to Mid-Tertiary Basin Evolution in the Central Tibetan Plateau: Changing Environments in Response to Tectonic Partitioning, Aridification, and Regional Elevation Gain [J]. Geological Society of America Bulletin, 119(5-6): 654-680. doi: 10.1130/B26074.1

    [9]

    Demaison G J and Moore G T, 1980. Anoxic environments and oil source bed genesis [J]. AAPG Bulletin, 64: 1179-1209.

    [10]

    付文钊, 余继峰, 杨锋杰, 等, 2013. 测井记录中米氏旋回信息提取及其沉积学意义—以济阳坳陷区为例[J]. 中国矿业大学学报, 42(6): 1025-1032 doi: 10.3969/j.issn.1000-1964.2013.06.021

    Fu W Z, Yu J F, Yang F J, et al, 2013. Feature extraction of Milankovitch cycle in well logs and its sedimentological significance: a case study of Jiyang depression zone[J]. Journal of China University of Mining & Technology, 42(6): 1025-1032. doi: 10.3969/j.issn.1000-1964.2013.06.021

    [11]

    龚大兴, 伊海生, 吴驰华, 等, 2011. 南盘江盆地二叠系高频沉积旋回的测井响应及海平面变化趋势[J]. 地球物理学进展, 26(1): 287-293 doi: 10.3969/j.issn.1004-2903.2011.01.033

    Gong D X, Yi H S, Wu C H, et al, 2011. High-frequency carbonate depositional cycles and its response to the gamma ray well logging data and sea-level change in Permian Nanpanjiang Basin[J]. Progress in Geophysics, 26(1): 287-293. doi: 10.3969/j.issn.1004-2903.2011.01.033

    [12]

    Hays J D, Imbrie J, Shackleton N J, 1976. Variations in the Earth's Orbit: Pacemaker of the Ice Ages [J]. Science, 194: 1121-1132. doi: 10.1126/science.194.4270.1121

    [13]

    河南省地质调查院, 2002.1﹕25万尼玛区幅区域地质调查报告[R]. 中国地质调查局地质调查专报A第(H45C001003)号.

    Henan Geological Survey Institute, 2002. Regional geological survey report of the people's Republic of China(1: 250000 Nyima area)[R]. Special report on geological survey of China Geological Survey (Part A, No: H45C001003)

    [14]

    胡济民, 1995. 西藏伦坡拉盆地伦坡拉群研究的新认识[J]. 中扬油气勘查, (1): 15-23

    Hu J M, 1995. New insights from the study of the Lunpola Group in the Lunpola Basin, Xizang area [J]. Zhongyang Oil & Gas Exploration, (1): 15-23.

    [15]

    Huang C J, Hinnov L, Fischer A G, et al. , 2010. Astronomical tuning of the Aptian Stage from Italian reference sections [J]. Geology, 38(10): 899-902. doi: 10.1130/G31177.1

    [16]

    Huang H, Gao Y, Ma C, et al. , 2021. Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes [J]. Science Advances, 7(28): 9489-9498. doi: 10.1126/sciadv.abf9489

    [17]

    Idnurm M and Cook P J, 1980. Palaeomagnetism of beach ridges in South Australia and the Milankovitch theory of ice ages [J]. Nature, 286: 699-702. doi: 10.1038/286699a0

    [18]

    Kapp P, Decelles P G, Gehrels G E, et al. , 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nyima area of central Tibet [J]. Geological Society of America Bulletin, 119(7-8): 917-932. doi: 10.1130/B26033.1

    [19]

    Laskar J, Robutel P, Joutel F, et al. , 2004. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy & Astrophysics, 428(1): 261-285.

    [20]

    李凤杰, 郑荣才, 罗清林, 等, 2007. 四川盆地东北地区长兴组米兰科维奇周期分析[J]. 中国矿业大学学报, 36(6): 805-810 doi: 10.3321/j.issn:1000-1964.2007.06.018

    Li F J, Zheng R C, Luo Q L, et al, 2007. Analysis of Milankovitch Cycles of the Changxing Formation in Northeastern Sichuan Basin[J]. Journal of China University of Mining & Technology, 36(6): 805-810. doi: 10.3321/j.issn:1000-1964.2007.06.018

    [21]

    李堃宇, 伊海生, 夏国清, 2018. 基于测井曲线频谱分析柴达木盆地西部七个泉地区上、下油砂山组米兰科维奇旋回特征[J]. 地质科技情报, 37(3): 87-91 doi: 10.19509/j.cnki.dzkq.2018.0312

    Li K Y, Yi H S, Xia G Q, 2018. Characteristics of Milankovitch Cycles of Shangyoushashan and Xiayoushashan Formations in Qigequan Area, Western Qaidam Basin Based on the Spectral Analysis of the Logging Curve[J]. Geological Science and Technology Information, 37(3): 87-91. doi: 10.19509/j.cnki.dzkq.2018.0312

    [22]

    卢书炜, 任建德, 杜凤军, 等, 2003. 从尼玛地区地质新资料看中特提斯洋的构造演化[J]. 沉积与特提斯地质, 23(3): 35-39 doi: 10.3969/j.issn.1009-3850.2003.03.004

    Lu S W, Ren J D, Du F J, et al, 2003. Tectonic evolution of the Meso-Tethyan Ocean: An example from the Nyima region in Xizang[J]. Sedimentary Geology and Tethyan Geology, 23(3): 35-39. doi: 10.3969/j.issn.1009-3850.2003.03.004

    [23]

    马立祥, 张二华, 鞠俊成, 等, 1996. 西藏伦坡拉盆地下第三系沉积体系域基本特征[J]. 地球科学, 2: 174-178

    Ma L X, Zhang E H, Ju J C, et al, 1996. Basic characteristics of Paleogene deposition systems tract in Lunpola Basin, XiZang(Tibet)[J]. Journal of Earth Science, 2: 174-178.

    [24]

    马鹏飞, 王立成, 冉波, 2013. 青藏高原中部新生代伦坡拉盆地沉降史分析[J]. 岩石学报, 29(3): 990-1002

    Ma P F, Wang L C, Ran B, 2013. Subsidence analysis of the Cenozoic Lunpola basin, central Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 29(3): 990-1002.

    [25]

    Meyers S R, 2019. Cyclostratigraphy and the problem of astrochronologic testing [J]. Earth Science Reviews, 190(1): 190-223.

    [26]

    Milankovitvh M, 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem[M]. Akademie: Royale Serbe, 133: 1-633.

    [27]

    Plyusnina E E, Ruban D A, Conrad C P, et al. , 2016. Long-term eustatic cyclicity in the Paleogene: a critical assessment [J]. Proceedings of the Geologists’ Association. 127, 425–434.

    [28]

    秦建中, 2006. 青藏高原羌塘盆地油气资源潜力分析[J]. 石油实验地质, 28(6): 566-573 doi: 10.3969/j.issn.1001-6112.2006.06.012

    Qin J Z, 2006. Study on the petroleum resource potential in the Qiangtang Basin, Qinghai-Tibet Plateau[J]. Petroleum Geology & Experiment, 28(6): 566-573. doi: 10.3969/j.issn.1001-6112.2006.06.012

    [29]

    Shi J Y, Jin Z J, Liu Q Y, et al., 2018. Terrestrial sedimentary responses to astronomically forced climate changes during the early Paleogene in the Bohai Bay Basin, eastern China. Palaeogeograghy Palaeoclimatology Palaeoecology, 502, 1–12.

    [30]

    石巨业, 金之钧, 刘全有, 等. 2019. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质, 6: 1205-1214

    Shi J Y, Jin Z J, Liu Q Y, et al., 2019. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 6: 1205-1214.

    [31]

    孙涛, 王成善, 李亚林, 等, 2012. 西藏中部伦坡拉盆地古近系沉积有机质特征及意义[J]. 地球化学, 041(6): 530-537 doi: 10.3969/j.issn.0379-1726.2012.06.003

    Sun T, Wang C S, Li Y L, et al, 2012. Characteristics and significance of sedimentary organic matter in the Paleogene of Lunpola basin, central Tibet[J]. Geochimica, 041(6): 530-537. doi: 10.3969/j.issn.0379-1726.2012.06.003

    [32]

    唐闻强, 伊海生, 伊帆, 等, 2020. 基于测井曲线频谱分析柴西南扎哈泉地区下干柴沟组米兰科维奇旋回特征[C]//SPG/SEG南京2020年国际地球物理会议, 1042-1045

    Tang W Q, Yi H S, Yi F, et al., 2020. Characteristics of Milankovitch Cycles of Xia Ganchaigou Formations in Zhahaquan Area, Southwest Qaidam Basin, Based on the Spectral Analysis of the Logging Curve [C]//Proceedings of SPG/SEG Nanjing 2020 International Geophysical Conference, 1042-1045.

    [33]

    Tyson R V, Pearson T H, 1991. Modern and Ancient Continental Shelf Anoxia [C]. Oxford: Geological Society Special Publication, 58: 1–24.

    [34]

    王波明, 周家声, 闻涛, 等, 2009. 西藏尼玛盆地陆相地层归属及其油气意义[J]. 天然气技术, 3(4): 21-24

    Wang B M, Zhou J S, Wen T, et al, 2009. Timing of Terrestrial Strata in Tibetan Nyima Basin and Its Significance[J]. Natural Gas Technology, 3(4): 21-24.

    [35]

    王成善, 李亚林, 李永铁, 2006. 青藏高原油气资源远景评价问题[J]. 石油学报, 27(4): 1-7 doi: 10.3321/j.issn:0253-2697.2006.04.001

    Wang C S, Li Y L, Li Y T, 2006. Discussion on evaluation of oil and gas resources in Qinghai-Tibet Plateau[J]. Acta Petrolei Sinica, 27(4): 1-7. doi: 10.3321/j.issn:0253-2697.2006.04.001

    [36]

    王成善, 伊海生, 李勇, 等, 2001. 西藏羌塘盆地地质演化与油气远景评价[M]. 北京: 地质出版社.

    Wang C S, Yi H S, Li Y, et al., 2001. The Geological evolution and prospective oil and gas assessment of the Qiangtang Basin in Northern Tibetan Plateau [M]. Beijing: Geological Publishing House.

    [37]

    王开发, 杨蕉文, 李哲, 等, 1975. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理[J]. 地质科学, 10(4): 366-374

    Wang K F, Yang J W, Li Z, et al, 1975. On the tertiary sporo-pollen assemblages from Lunpola Basin of XiZang, china and their paleogeographic significance[J]. Chinese Journal of Geology, 10(4): 366-374.

    [38]

    Wang L C, Wang C C, Li Y L, et al. , 2011. Organic Geochemistry of Potential Source Rocks in the Tertiary Dingqinghu Formation, Nima Basin, Central Tibet [J]. Journal of Petroleum Geology, 34(1): 67-85. doi: 10.1111/j.1747-5457.2011.00494.x

    [39]

    吴怀春, 张世红, 黄清华, 2008. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘, 15(4): 159-169 doi: 10.3321/j.issn:1005-2321.2008.04.018

    Wu H C, Zhang S H, Huang Q H, 2008. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao basin of Northeast China[J]. Earth Science Frontiers, 15(4): 159-169. doi: 10.3321/j.issn:1005-2321.2008.04.018

    [40]

    西藏自治区地质矿产局, 1993. 西藏自治区区域地质志[M]. 北京: 地质出版社.

    Tibet autonomous region geological and mineral exploration and Development Bureau, 1993. Regional geology of Xizang(Tibet) Autonomous Region [M]. Beijing: Geological Publishing House.

    [41]

    夏代祥, 刘世坤, 滕云, 等, 1997. 西藏自治区岩石地层[M]. 北京: 中国地质大学出版社.

    Xia D X, Liu S K, Teng Y, et al. , 1997. Stratigraphy lithostratigraphy of Xizang (Tibet) Autonomous Region [M]. Beijing: China University of Geosciences Press.

    [42]

    薛光琦, 钱辉, 姜枚, 2005. 青藏高原西缘上地幔构造特征-穿越西昆仑造山带的接收函数反演[J]. 地质论评, 51(6): 708-712 doi: 10.3321/j.issn:0371-5736.2005.06.013

    Xue G Q, Qian H, Jiang M, 2005. Tectonic Characteristic of Mantle on the West Edge of Qinghai-Xizang Plateau-Receiver Function Inversion through West Kunlun Orogenic Belt[J]. Geological Review, 51(6): 708-712. doi: 10.3321/j.issn:0371-5736.2005.06.013

    [43]

    尹青, 伊海生, 夏国清, 等, 2015. 基于测井曲线频谱分析在伦坡拉盆地古近系米氏旋回层序及可容空间变化趋势中的研究[J]. 地球物理学进展, 30(3): 1288-1297 doi: 10.6038/pg20150339

    Yin Q, Yi H S, Xia G Q, et al, 2015. Accommodation space and Milankovitch orbit cycle sequence of the Paleogene stratigraphic frames in Lunpola basin based on the spectrum snalysis of the logging curve[J]. Progress in Geophysics, 30(3): 1288-1297. doi: 10.6038/pg20150339

    [44]

    Zachos J C, 2001. Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary [J]. Science, 292(5515): 274-278. doi: 10.1126/science.1058288

    [45]

    Zhang R, Jin Z, Liu Q, et al. , 2019. Astronomical constraints on deposition of the Middle Triassic Chang 7 lacustrine shales in the Ordos Basin, Central China [J]. Palaeogeography Palaeoclimatology Palaeoecology, 528, 87-98.

    [46]

    张大伟, 2011. 西藏地区油气资源潜力与战略选区[J]. 中国矿业, 20(3): 1-5 doi: 10.3969/j.issn.1004-4051.2011.03.001

    Zhang D W, 2011. Potential of hydrocarbon resources and strategic research in Tibet area[J]. China Mining Magazine, 20(3): 1-5. doi: 10.3969/j.issn.1004-4051.2011.03.001

    [47]

    赵帅, 解习农, 刘中戎, 等, 2019. 古地貌对断陷盆地沉积体系的控制作用: 以青藏高原伦坡拉盆地始新统牛堡组为例[J]. 地质科技情报, 38(2): 59-70 doi: 10.19509/j.cnki.dzkq.2019.0207

    Zhao S, Xie X N, Liu Z R, et al, 2019. Control of Tectonic-Paleogeomorphology on Deposition System of Faulting-Subsiding Basin: A Case from the Eocene Niubao Formation in Lunpola Basin, Central Tibet[J]. Geological Science and Technology Information, 38(2): 59-70. doi: 10.19509/j.cnki.dzkq.2019.0207

  • 加载中

(6)

(1)

计量
  • 文章访问数:  685
  • PDF下载数:  107
  • 施引文献:  0
出版历程
收稿日期:  2021-07-28
修回日期:  2021-09-27
刊出日期:  2023-09-30

目录