西藏尼玛盆地古近纪湖相油页岩正构烷烃特征及其古环境与古气候意义

汪素风, 陈云, 伊海生, 唐闻强, 周羽漩, 崔荣龙, 伍新和, 白蓉, 杨芸. 2023. 西藏尼玛盆地古近纪湖相油页岩正构烷烃特征及其古环境与古气候意义. 沉积与特提斯地质, 43(3): 542-554. doi: 10.19826/j.cnki.1009-3850.2022.10001
引用本文: 汪素风, 陈云, 伊海生, 唐闻强, 周羽漩, 崔荣龙, 伍新和, 白蓉, 杨芸. 2023. 西藏尼玛盆地古近纪湖相油页岩正构烷烃特征及其古环境与古气候意义. 沉积与特提斯地质, 43(3): 542-554. doi: 10.19826/j.cnki.1009-3850.2022.10001
WANG Sufeng, CHEN Yun, YI Haisheng, TANG Wenqiang, ZHOU Yuxuan, CUI Ronglong, WU Xinhe, BAI Rong, YANG Yun. 2023. The characteristics of n-alkanes from the Palaeogene lacustrine oil shale in the Kanggale area, Nyima Basin, and their paleoenvironment and Paleoclimate significance. Sedimentary Geology and Tethyan Geology, 43(3): 542-554. doi: 10.19826/j.cnki.1009-3850.2022.10001
Citation: WANG Sufeng, CHEN Yun, YI Haisheng, TANG Wenqiang, ZHOU Yuxuan, CUI Ronglong, WU Xinhe, BAI Rong, YANG Yun. 2023. The characteristics of n-alkanes from the Palaeogene lacustrine oil shale in the Kanggale area, Nyima Basin, and their paleoenvironment and Paleoclimate significance. Sedimentary Geology and Tethyan Geology, 43(3): 542-554. doi: 10.19826/j.cnki.1009-3850.2022.10001

西藏尼玛盆地古近纪湖相油页岩正构烷烃特征及其古环境与古气候意义

  • 基金项目: 尼玛盆地南部坳陷沉积构造调查(DD2016160-YQ17W01)
详细信息
    作者简介: 汪素风(1995—),女,硕士研究生,研究方向为古气候与古环境。E-mail:wsf19113272354@163.com
    通讯作者: 伊海生(1959—),男,教授,博士生导师,研究方向为沉积学。E-mail:yhs@cdut.edu.cn
  • 中图分类号: P532

The characteristics of n-alkanes from the Palaeogene lacustrine oil shale in the Kanggale area, Nyima Basin, and their paleoenvironment and Paleoclimate significance

More Information
  • 尼玛盆地地处青藏高原中部特殊区域,自新生代以来沉积了大套连续的湖相暗色油页岩,其富含生物分子化石,对重建青藏高原古气候和古环境具有重要意义。本文通过对尼玛盆地古近系牛堡组康嘎勒剖面正构烷烃及相关参数分布特征进行研究,结果显示,剖面油页岩正构烷烃分布从底到顶由单峰前峰型向单峰后峰型过渡,具2个旋回周期;碳优势指数相对稳定,但TAR、ACL、PaqnC≤21/nC≥25变化较大,表明湖泊沉积有机质由内源为主的低等藻类向高等水生植物和外源陆生高等植物转变,且区域气候环境由温凉湿润向炎热干旱逐步演化。综合分析认为,尼玛盆地在始新世的气候变化在很大程度上是受西风环流和季风系统的共同影响。且西风环流和季风的强度变化与全球气候存在一定的关系。即全球变暖时,西风环流势力减弱,西风环流和残余洋水汽为高原中部提供的有效降水减少,气候相对干旱;而在全球降温时,西风环流和印度季风增强,残余洋水汽的叠加又为高原中部提供了充足的有效降水,气候湿润。

  • 加载中
  • 图 1  尼玛盆地地理位置及研究区地层分布图(据西藏自治区地质局第四地质大队伦坡拉地区地质图修改,1981)

    Figure 1. 

    图 2  康嘎勒剖面野外露头照片

    Figure 2. 

    图 3  青藏高原中部班公湖–怒江缝合带牛堡组地层对比

    Figure 3. 

    图 4  尼玛盆地康嘎勒剖面的正构烷烃分布特征

    Figure 4. 

    图 5  尼玛盆地康嘎勒剖面正构烷烃ACL与nC27 /nC31的关系图

    Figure 5. 

    图 6  尼玛盆地康嘎勒剖面正构烷烃相关参数、气候变化趋势与深海氧同位素曲线( Zachos, 2001 )

    Figure 6. 

    图 7  青藏高原中部始新世古气候演化模式图(根据Bosboom et al., 2011Fang et al., 2021寿绍文,2009修订)

    Figure 7. 

    表 1  尼玛盆地康嘎勒剖面的正构烷烃参数

    Table 1.  N-alkane parameters of the Kanggale Section, Nyima Basin.

    样品编号岩性L/HCPIPaqTARACLnC27 /nC31短链中链长链
    NKP-01S1油页岩0.961.220.640.6526.261.5741.7636.2022.04
    NKP-01S2油页岩4.411.320.630.1126.321.4778.2514.197.56
    NKP-03S1油页岩1.301.230.550.4926.731.3349.2826.8923.83
    NKP-10S1油页岩1.021.310.570.6426.611.6444.6631.0124.33
    NKP-10S2油页岩1.401.220.680.3726.072.5353.8029.7816.42
    NKP-14S1油页岩0.831.240.660.7126.152.5339.6838.3022.02
    NKP-14S2油页岩0.861.180.670.6426.442.8042.7935.0322.18
    NKP-14S3油页岩0.471.230.611.6126.432.1625.1742.9331.90
    NKP-18S1油页岩0.491.060.561.4226.681.5025.1835.7339.10
    NKP-23S1油页岩1.821.110.680.2626.181.5758.7725.9315.30
    NKP-23S2油页岩1.861.280.620.2926.391.7759.8924.0316.08
    NKP-24S1油页岩1.021.300.670.6026.091.9742.1639.4718.37
    NKP-25S1油页岩1.011.280.610.6426.411.8643.2235.4121.37
    NKP-26S1油页岩1.211.170.630.5126.331.8248.3632.4119.23
    NKP-26S2油页岩0.251.220.533.9326.831.9316.1641.6742.17
    NKP-27S1油页岩0.481.110.661.4326.202.0724.9644.7730.27
    注: CPI=[∑(C25-C33)odd/∑(C24-C32)even+∑(C25-C33)odd/∑(C26-C34)even]/2; Paq=(C23+C25)/(C23+C25+C29+C31);TAR=(C27+C29+C31)/(C15+C17+C19); ACL=(23×C23+25×C25+27×C27+29×C29+31×C31)/(C23+C25+C27+C29+C31); 短链(%)=[∑(C14-C20)/∑(C14-C40)]×100; 中链(%)=[∑(C21-C26)/∑(C14-C40)]×100; 长链(%)=[∑(C27-C40)/∑(C14-C40)]×100; L/H=∑C21-(≤21)/∑C22+(≥22)。
    下载: 导出CSV
  • [1]

    白培荣, 曾禹人, 李月森, 等, 2017. 藏北班戈盆地东南缘恐弄拉地区始新世植物化石的发现及其意义[J]. 贵州地质, 34(4):301-305.

    Bai P R, Zeng Y R, Li Y S, et al., Discovery and Its Significance of the Eocene Plant Fossils in the Kongnongla Area from the Southeast Margin Bangor Basin in Northern Tibet[J].Guizhou Geology,34(4): 301-305.

    [2]

    Beasley C, Kender S, Giosan L, et al. , 2021. Evidence of a South Asian Proto–Monsoon During the Oligocene-Miocene Transition[J]. Paleoceanography and Paleoclimatology, 36(9): e2021PA004278.

    [3]

    Blyth A J, Baker A, Collins M J, et al., 2008. Molecular organic matter in speleothems and its potential as an environmental proxy[J]. Quaternary Science Reviews, 27(9–10): 905–921.

    [4]

    Boot C S, Ettwein V J, Maslin M A, et al. , 2006. A 35, 000 year record of terrigenous and marine lipids in Amazon Fan sediments [J]. Organic Geochemistry, 37(2): 208–219. doi: 10.1016/j.orggeochem.2005.09.002

    [5]

    Bosboom R E, Dupont−Nivet G, Houben A, et al., 2011. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography Palaeoclimatology Palaeoecology, 299(3–4): 385–398.

    [6]

    Bosboom R, Dupont-Nivet G, Grothe A, et al. , 2014. Linking Tarim Basin sea retreat (West China) and Asian aridification in the late Eocene[J]. Basin Research, 26(5): 621– 640. doi: 10.1111/bre.12054

    [7]

    Brocks J J, Grice K, 2011. Biomarkers (Molecular Fossils) [M]. Springer Netherlands, 147–167.

    [8]

    Bush R T, Mcinerney F A, 2013. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta, 117: 161–179. doi: 10.1016/j.gca.2013.04.016

    [9]

    Carrapa B, DeCelles P G, Wang X, et al. , 2015. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia[J]. Earth and Planetary Science Letters, 424: 168–178. doi: 10.1016/j.jpgl.2015.05.034

    [10]

    Castañeda I S, Schouten S. 2011. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 30(21–22): 2851–2891.

    [11]

    Cranwell P A, Eglinton G, Robinson N, 1987. Lipids of aquatic organisms as potential contributors to lacusteine sedments–Ⅱ[J]. Organic Geochemistry, 11(6): 513–527 doi: 10.1016/0146-6380(87)90007-6

    [12]

    Deconto R M, Pollard D, 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 [J]. nature, 421: 245–249. doi: 10.1038/nature01290

    [13]

    Dodd R S, Poveda M M, 2003. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis[J]. Biochemical Systematics and Ecology, 31(11): 1257–1270. doi: 10.1016/S0305-1978(03)00031-0

    [14]

    Eglinton G, Hamilton R J, 1967. Leaf epicuticular waxes [J]. Science, 156: 1322–1335. doi: 10.1126/science.156.3780.1322

    [15]

    Eglinton T I, Eglinton G, 2008. Molecular Proxies for Paleoclimatology[J]. Earth and Planetary Science Letters, 275(1–2): 1–16.

    [16]

    Fang X, Dupont-Nivet G, Wang C, et al. , 2020. Revised chronology of central Tibet uplift (Lunpola Basin)[J]. Science Advances, 6(50): eaba7298. doi: 10.1126/sciadv.aba7298

    [17]

    Fang X, Yan M, Zhang W, et al. , 2021. Paleogeography control of Indian monsoon intensification and expansion at 41 Ma[J]. Science Bulletin, 66(22): 2320–2328. doi: 10.1016/j.scib.2021.07.023

    [18]

    Ficken K J, Li B, Swain D L, et al. , 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 31(7-8): 745–749. doi: 10.1016/S0146-6380(00)00081-4

    [19]

    Filho P J S, Luz L P, Betemps G R, et al., 2013. Studies of n−alkanes in the sediments of colony Z3 (Pelotas−RS−Brazil) [J]. Brazilian Journal of Aquatic Science and Technology. 17(1): 27–33.

    [20]

    Gagosian R B, Peltzer E T, 1986. The importance of atmospheric input of terrestrial organic material to deep sea sediments[J]. Organic Geochemistry, 10(4-6): 661–669. doi: 10.1016/S0146-6380(86)80002-X

    [21]

    Ishiwatari R, Yamamoto S, Uemura H, 2005. Lipid and lignin/cutin compounds in Lake Baikal sediments over the last 3 kyr: Implications for glacial-interglacial palaeoenvironmental change [J]. Organic Geochemistry, 36(3): 327–347 doi: 10.1016/j.orggeochem.2004.10.009

    [22]

    Li J, 1991. The environmental effects of the uplift of the Qinghai-Xizang Plateau[J]. Quaternary Science Reviews, 10(6): 479–483. doi: 10.1016/0277-3791(91)90041-R

    [23]

    Licht A, Van Cappelle M, Abels H A, et al. , 2014. Asian monsoons in a late Eocene greenhouse world [J]. Nature, 513(7519): 501–506. doi: 10.1038/nature13704

    [24]

    Licht A. , Dupont-Nivet G, Pullen A, et al. , 2016. Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance [J]. Nature Communication, 7(1): 1–6.

    [25]

    Lu H, Guo Z, 2014. Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review[J]. Science China Earth Sciences, 57(1): 70–79. doi: 10.1007/s11430-013-4790-3

    [26]

    Meyers P A, 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 34(2): 261–289. doi: 10.1016/S0146-6380(02)00168-7

    [27]

    Ouyang X, Guo F, Bu H, 2015. Lipid biomarkers and pertinent indices from aquatic environment record paleoclimate and paleoenvironment changes[J]. Quaternary Science Reviews, 123: 180–192. doi: 10.1016/j.quascirev.2015.06.029

    [28]

    Pearson E J, Farrimond P, Juggins S, 2007. Lipid geochemistry of lake sediments from semi-arid Spain: Relationships with source inputs and environmental factors[J]. Organic Geochemistry, 38(7): 1169–1195. doi: 10.1016/j.orggeochem.2007.02.007

    [29]

    Ratnayake N P, Suzuki N, Okada M, et al. , 2006. The variations of stable carbon isotope ratio of land plant-derived-alkanes in deep sea sediments from the bering Sea and north Pacific Ocean during the last 250, 000 years [J]. Chemical Geology, 228(4): 197–208. doi: 10.1016/j.chemgeo.2005.10.005

    [30]

    Scheffer M. 1999. The effect of aquatic vegetation on turbidity; how important are the filter feeders? [J]. Hydrobiologia, 408−409: 307–316.

    [31]

    Schefuß E, Ratmeyer V, Stuut J B, et al. , 2003. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta, 67(10): 1757–1767. doi: 10.1016/S0016-7037(02)01414-X

    [32]

    Song E P, Zhang K X, Yi S, et al. , 2013. Cenozoic uplift of the Tibetan Plateau on the Global Response to Climate Change[J]. Advanced Materials Research, 864–867: 2719–2724.

    [33]

    Su T, Farnsworth A, Spicer R A, et al. , 2019. No high Tibetan Plateau until the Neogene[J]. Science Advances, 5(3): eaav2189. doi: 10.1126/sciadv.aav2189

    [34]

    Su T, Spicer R A, Wu F X, et al. , 2020. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet[J]. Proceedings of the national Academy of Sciences, 117(52): 32989–32995. doi: 10.1073/pnas.2012647117

    [35]

    Sun J, Windley B F, 2015. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia[J]. Geology, 43(11): 1015–1018. doi: 10.1130/G37165.1

    [36]

    Sun J, Windley B F, Zhang Z, et al. , 2016. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene[J]. Journal of Asian Earth Sciences, 116: 222–231. doi: 10.1016/j.jseaes.2015.11.020

    [37]

    Sun Y, 2015. Miocene climate change on the Chinese Loess Plateau: Possible links to the growth of the northern Tibetan Plateau and global cooling[J]. Geochemistry Geophysics Geosystems, 7(16): 2097–2108.

    [38]

    Thomas D J, Zachos J C, Bralower T J, et al. , 2002. Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum[J]. Geology, 30(12): 1067–1070. doi: 10.1130/0091-7613(2002)030<1067:WTFFTF>2.0.CO;2

    [39]

    Volkman J K, Barrett S M, Blackburn S I, et al. , 1998. Microalgal biomarkers: A review of recent research developments[J]. Organic Geochemistry, 29(5–7): 1163–1179.

    [40]

    Wang C S, Zhao X X, Liu Z F, et al. , 2008. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(13): 4987-92. doi: 10.1073/pnas.0703595105

    [41]

    Wang Y, Xu S, Hao F, et al. 2021. Arid climate disturbance and the development of salinized lacustrine oil shale in the Middle Jurassic Dameigou Formation, Qaidam Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110533.

    [42]

    Wu F, Miao D, Chang M, et al. , 2017. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene[J]. Scientific Reports, 7(1): 878. doi: 10.1038/s41598-017-00928-9

    [43]

    Xiong Z, Liu X, Ding L, et al. 2022. The rise and demise of the Paleogene Central Tibetan Valley[J]. Science advances, 8(6): eabj0944.

    [44]

    Yadav A, Praveen K M, Prem K, et al. , 2017. Molecular distribution and carbon isotope of n-alkanes from Ashtamudi Estuary, South India: Assessment of organic matter sources and paleoclimatic implications[J]. Marine Chemistry, 196: 62–70. doi: 10.1016/j.marchem.2017.08.002

    [45]

    Zachos J, 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present [J]. Science, 292(5517): 686–693. doi: 10.1126/science.1059412

    [46]

    Zhang H, Wang R, Xiao W, 2017. Paleoenvironmental implications of Holocene long-chain n-alkanes on the northern Bering Sea Slope[J]. Acta Oceanologica Sinica, 36(8): 137–145. doi: 10.1007/s13131-017-1032-0

    [47]

    Zhang Z, Zhao M, Eglinton G, et al. , 2006. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr[J]. Quaternary Science Reviews, 25(5–6): 575–594.

    [48]

    Zhang Z, Zhao M, Yang X, et al. , 2004. A hydrocarbon biomarker record for the last 40 Kyr of plant input to Lake Heqing, Southwestern China[J]. Organic Geochemistry, 35(5): 595–613. doi: 10.1016/j.orggeochem.2003.12.003

    [49]

    陈云, 唐闻强, 张承志, 等, 2021. 基于自然伽马测井曲线的旋回识别及古气候判断[J]. 测井技术, 45(4): 8 doi: 10.16489/j.issn.1004-1338.2021.04.013

    Chen Y, Tang W Q, Zhang C Z, et al. , 2021. Study on Paleoclimate and Dentification of High Frequency Cycle Based on Natural Gamma Ray Logging Data[J]. Well Logging Technology, 45(4): 8. doi: 10.16489/j.issn.1004-1338.2021.04.013

    [50]

    高海龙, 2017. 富营养化浅水湖泊沉水植物恢复研究[D]. 南京大学.

    Gao H L, 2017. Research on the Recovery of the Submerged Macrophyte in Eutrophicated Shallow Lakes[D]. Nanjing University.

    [51]

    郭正堂, 2017. 黄土高原见证季风和荒漠的由来[J]. 中国科学: 地球科学, 47(4): 421–437

    Guo Z T, 2017. Loess Plateau attests to the onsets of monsoon and deserts[J]. Scientia Sinica(Terrae), 47(4): 421–437.

    [52]

    李亚林, 王成善, 朱利东, 等, 2010. 西藏尼玛盆地油页岩的发现及其地质意义[J]. 地质通报, 29(12): 1872–1874 doi: 10.3969/j.issn.1671-2552.2010.12.016

    Li Y L, Wang C S, Zhu L D, et al. , 2010. Discovery of oil shale in the Nima basin, Tibet, China and its significance[J]. Geological Bulletin of China, 29(12): 1872–1874. doi: 10.3969/j.issn.1671-2552.2010.12.016

    [53]

    李英杰, 胡小贞, 胡社荣, 等, 2009. 草、藻型湖泊水体生态及理化特性的实验对比[J]. 生态环境学报, 8(05): 1649-1654 doi: 10.3969/j.issn.1674-5906.2009.05.008

    Li Y J, Hu X Z, Hu S R, et al. , 2009. Microcosmic experimental comparison of ecological and physicochemical characters between macrophytic and algal lakes[J]. Ecology and Environmental Sciences, 8(05): 1649-1654. doi: 10.3969/j.issn.1674-5906.2009.05.008

    [54]

    廖铸敏, 白培荣, 2019. 班公错-怒江缝合带牛堡组中植物大化石的发现及其意义[J]. 云南地质, 38(1): 10–14

    Liao Z M, Bai P R, 2019. The Discovery and significance of flora macrofossil in Niubao formation of Bangongcuo -Nujiang river suture[J]. Yunnan Geology, 38(1): 10–14.

    [55]

    刘嘉丽, 刘强, 伍婧, 等, 2017. 大兴安岭四方山天池全新世以来沉积物正构烷烃分布, 单体碳同位素特征及古环境意义[J]. 湖泊科学, 29(2): 498–511 doi: 10.18307/2017.0226

    Liu J L, Liu Q, Wu J, et al. , 2017. N-alkanes distributions and compound-specific carbon isotope records and their paleoenviromental significance of sediments from Lake Sifangshan in the Great Khingan Mountain, Northeastern China[J]. Journal of Lake Sciences, 29(2): 498–511. doi: 10.18307/2017.0226

    [56]

    马鹏飞, 王立成, 冉波, 2013. 青藏高原中部新生代伦坡拉盆地沉降史分析[J]. 岩石学报, 29(3): 990–1002

    Ma P F, Wang L C, Ran B, 2013. Subsidence analysis of the Cenozoic Lunpola basin, central Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 29(3): 990–1002.

    [57]

    蒲阳, 张虎才, 雷国良, 等, 2010. 青藏高原东北部柴达木盆地古湖泊沉积物正构烷烃记录的 MIS3晚期气候变化[J]. 中国科学: 地球科学, 40(5): 624–631

    Pu Y, Zhang H C, Lei G L, et al. , Climate variability recorded by n−alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3[J]. Scientia Sinica(Terrae) 40(5): 624–631.

    [58]

    寿绍文, 2009. 天气学[M]. 北京: 气象出版社.

    Shou S W, 2009. Synoptic Meteorology[M]. Beijing: China Meteorological Press.

    [59]

    宋英伟, 李英杰, 孙艳妮, 等, 2006. 富营养化浅水湖泊稳态转换理论与生态恢复探讨[J]. 环境科学研究, 1: 67–70 doi: 10.3321/j.issn:1001-6929.2006.01.017

    Song Y W, Li Y J, Sun Y N, et al. , 2006. Regime Shift Theory and Ecological Restoration Discussion in Eutrophic Shallow Lakes[J]. Research of Environmental Sciences, 1: 67–70. doi: 10.3321/j.issn:1001-6929.2006.01.017

    [60]

    孙涛, 王成善, 李亚林, 等, 2013. 西藏中部尼玛盆地页岩气地质特征及资源潜力[J]. 中国矿业, 22(1): 72–75 doi: 10.3969/j.issn.1004-4051.2013.01.019

    Sun T, Wang C S, Li Y L, et al. , 2013. Geological characteristics and resource potential of shale gas in Nima Basins, central Tibet[J]. China Mining Magazine, 22(1): 72–75. doi: 10.3969/j.issn.1004-4051.2013.01.019

    [61]

    陶江龙, 2018. 西藏双湖县多玛地区牛堡组—丁青湖组沉积环境分析[D]. 北京: 中国地质大学(北京).

    Tao J L, 2018. Sedimentary Environment Analysis of Niubao Formation−Ding Qinghu Formation in Duoma Area, Shuanghu, Northern Tibet[J]. Beijing: China University of Geosciences(Beijing).

    [62]

    王波明, 周家声, 闻涛, 等, 2009. 西藏尼玛盆地陆相地层归属及其油气意义[J]. 天然气技术, 3(4): 21–24

    Wang B M, Zhou J S, Wen T, et al. , 2009. Timing of Terrestrial Strata in Tibetan Nyima Basin and Its Significance[J]. Natural Gas Technology, 3(4): 21–24.

    [63]

    王开发, 杨蕉文, 李哲, 等, 1975. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理[J]. 地质科学, 4: 366–374

    Wang K F, Yang J W, Li Z, et al. , 1975. On the tertiary sporopollen assemblages from Lunpola basis of Xizang, China and their palaeogeographic significance[J]. Chinese Journal of Geology, 4: 366–374.

    [64]

    伍光和, 王乃昂, 胡双熙, 等, 2008. 自然地理学(第四版)[M]. 北京: 高等教育出版社.

    Wu G H, Wang N A, Hu S X, et al. , 2008. Physical geography ( the 4th Edition)[M]. Beijing: Higher education press.

    [65]

    夏位国, 1986. 西藏班戈县伦坡拉盆地伦坡拉群的轮藻化石[C] //中国地质科学院成都地质矿产研究所文集(7)[C]. 64–71.

    Xia W G, 1986. Some charophyte from Lunpola Basin, baingoin County, Xizang(Tibet)[C]//Bulletin of the Chengdu Institute of Geology and Mineral Resources, The Chinese Academy of Geological Sciences(7)[C].

    [66]

    谢树成, Evershed R P, 2001. 泥炭分子化石记录气候变迁和生物演替的信息[J]. 科学通报, 46(10): 863–866 doi: 10.3321/j.issn:0023-074X.2001.10.019

    Xie S C, Evershed R P, 2001. A record of climate change and biological succession of molecular fossils in Peat Deposits[J]. Chinese Science Bulletin, 46(10): 863–866. doi: 10.3321/j.issn:0023-074X.2001.10.019

    [67]

    杨桂芳, 武法东, 陈正洪, 等, 2015. 内蒙古磴口河湖相沉积物正构烷烃分布特征及其环境意义[J]. 地球科学-中国地质大学学报, 40(2): 327–333 doi: 10.3799/dqkx.2015.025

    Yang G F, Wu F D, Chen Z H, et al. , 2015. n-Alkane Distribution and Their Palaeoenvironmental Implications in Fluvial-Lacustrine Sediments in Dengkou, Inner Mongolia[J]. Earth Science(Journal of China University of Geosciences), 40(2): 327–333. doi: 10.3799/dqkx.2015.025

    [68]

    赵佳玉, 王淑贤, Andrey Darin, 等, 2021. 新疆阿尔泰全新世双湖沉积物正构烷烃分布及其环境意义[J]. 第四纪研究, 41(04): 965–975

    Zhao J Y, Wang S X, Andrey Darin, et al. , 2021. N-alkanes Distribution and their paleoenvironmental implications during Holocene in lacustring Sediments in lake Shuang, Xinjiang[J]. Quaternary Sciences, 41(04): 965–975.

    [69]

    赵帅, 解习农, 刘中戎, 等, 2019. 古地貌对断陷盆地沉积体系的控制作用: 以青藏高原伦坡拉盆地始新统牛堡组为例[J]. 地质科技情报, 38(2): 59–70 doi: 10.19509/j.cnki.dzkq.2019.0207

    Zhao S, Xie X N, Liu Z R, et al. , 2019. Control of Tectonic-Paleogeomorphology on Deposition System of Faulting-Subsiding Basin: A Case from the Eocene Niubao Formation in Lunpola Basin, Central Tibet[J]. Geological Science and Technology Information, 38(2): 59–70. doi: 10.19509/j.cnki.dzkq.2019.0207

    [70]

    郑艳红, 周卫健, 谢树成, 2007. 若尔盖高原全新世气候序列的类脂分子化石记录[J]. 第四纪研究, 1: 108–113 doi: 10.3321/j.issn:1001-7410.2007.01.013

    Zheng Y H, Zhou W J, Xie S C, 2007. Fossil records of Lipid molecules from Holocene peat on ZoiGê Plateau[J]. Quaternary Sciences, 1: 108–113. doi: 10.3321/j.issn:1001-7410.2007.01.013

  • 加载中

(7)

(1)

计量
  • 文章访问数:  808
  • PDF下载数:  128
  • 施引文献:  0
出版历程
收稿日期:  2022-08-04
修回日期:  2022-08-04
刊出日期:  2023-09-30

目录