扬子陆块西缘中元古代晚期元谋花岗岩的时代、成因及构造意义

宋冬虎, 王燕, 刘兵, 熊波, 关奇, 路永严, 刘晓玮, 刘军平, 田素梅, 米云川, 张硕. 2023. 扬子陆块西缘中元古代晚期元谋花岗岩的时代、成因及构造意义. 沉积与特提斯地质, 43(3): 661-673. doi: 10.19826/j.cnki.1009-3850.2022.08006
引用本文: 宋冬虎, 王燕, 刘兵, 熊波, 关奇, 路永严, 刘晓玮, 刘军平, 田素梅, 米云川, 张硕. 2023. 扬子陆块西缘中元古代晚期元谋花岗岩的时代、成因及构造意义. 沉积与特提斯地质, 43(3): 661-673. doi: 10.19826/j.cnki.1009-3850.2022.08006
SONG Donghu, WANG Yan, LIU Bing, XIONG Bo, GUAN Qi, LU Yongyan, LIU Xiaowei, LIU Junping, TIAN Shumei, MI Yunchuan, ZHANG Shuo. 2023. Age, petrogenesis and tectonic implications of Late Mesoproterozoic Yuanmou Granite in the Western Yangtze Block, South China. Sedimentary Geology and Tethyan Geology, 43(3): 661-673. doi: 10.19826/j.cnki.1009-3850.2022.08006
Citation: SONG Donghu, WANG Yan, LIU Bing, XIONG Bo, GUAN Qi, LU Yongyan, LIU Xiaowei, LIU Junping, TIAN Shumei, MI Yunchuan, ZHANG Shuo. 2023. Age, petrogenesis and tectonic implications of Late Mesoproterozoic Yuanmou Granite in the Western Yangtze Block, South China. Sedimentary Geology and Tethyan Geology, 43(3): 661-673. doi: 10.19826/j.cnki.1009-3850.2022.08006

扬子陆块西缘中元古代晚期元谋花岗岩的时代、成因及构造意义

  • 基金项目: 云南省省级财政预算项目“云南省矿产资源总体规划(2021—2025年)”;云南省自然资源厅地勘基金项目“云南省云南1∶5万曼彦等5幅区域地质调查”(D2017013)、云南区域地质调查片区总结与服务产品开发(DD20160345-02)
详细信息
    作者简介: 宋冬虎(1986—),男,工程师,本科,从事区域地质调查、矿产资源规划等工作,E-mail:380097649@qq.com
    通讯作者: 刘兵(1984—),男,高级工程师,本科,从事区域地质调查工作,E-mail:bb5167@126.com
  • 中图分类号: P588.1

Age, petrogenesis and tectonic implications of Late Mesoproterozoic Yuanmou Granite in the Western Yangtze Block, South China

More Information
  • 扬子陆块西缘晚中元古代地质演化史一直存在较大争议,本文选择以扬子西缘元谋杂岩中一套二长花岗岩为研究对象,开展岩相学、锆石U-Pb年代学、全岩地球化学等综合研究,为认识和理解扬子西缘晚中元古代地质演化提供支撑。两件元谋二长花岗岩样品的LA-ICP-MS锆石U-Pb年龄分别为1086±10 Ma(MSWD=1.4,n=50)和1099±10 Ma(MSWD=1.8,n=58)。所有样品具有高硅(SiO2为69.44%~73.98%)、富碱(Na2O+K2O为6.11%~7.72%)、贫钙(CaO为0.39%~1.46%)、贫镁(MgO为0.52%~0.76%)、低钛(TiO2为0.30%~0.59%)的特点,同时表现出强过铝质(A/CNK=1.19~1.35)及中钾钙碱性–钾玄岩系列特征。它们具有高的稀土元素总量(∑REE=211.60×10−6~349.01×10−6),呈现轻稀土元素富集和重稀土元素亏损((La/Yb)N=4.32~7.36);富集Rb、U、Th等大离子亲石元素和Zr、Th、Hf等,亏损Nb、Ta、Ba等元素,并具有明显的负Eu异常(δEu=0.46~0.59),锆石饱和温度介于827~912℃之间,展示了A型花岗岩的属性。这些二长花岗岩可能是通过中上地壳的中酸性火成岩的部分熔融形成,结合前人的研究成果,它们最可能形成于弧后的伸展环境,综合扬子陆块周缘晚中元古代的岩浆记录,元谋杂岩中1.09 Ga二长花岗岩的形成应与扬子陆块开始参与Rodinia超大陆聚合有关。

  • 加载中
  • 图 1  中国地质简图(a)及华南前寒武基底岩石分布图(b) (据Zhao and Cawood, 2012改)

    Figure 1. 

    图 2  康滇地轴(a)和元谋地区的地质简图(b) (据Wang et al., 2019.改)

    Figure 2. 

    图 3  元谋地区二长花岗岩样品的野外照片(a, c)和显微照片(b, d)

    Figure 3. 

    图 4  元谋地区二长花岗岩样品的锆石阴极发光(CL)图

    Figure 4. 

    图 5  元谋地区二长花岗岩样品D1095-1-1 (a)和D1103-2-2 (b)的LA-ICP-MS锆石U-Pb年龄谐和图

    Figure 5. 

    图 6  SiO2–(NaO2+K2O)图解

    Figure 6. 

    图 7  SiO2–K2O图解(a)和A/CNK–A/NK图解(b)

    Figure 7. 

    图 8  二长花岗岩样品的球粒陨石稀土元素配分(a)和原始地幔标准化蛛网图(b) (原始地幔标准化数据和球粒陨石标准化数据引自Sun and McDonough, 1989

    Figure 8. 

    图 9  二长花岗岩样品的(Zr+Nb+Ce+Y)–(NaO2+K2O)/CaO (a; Whalen et al., 1987)、10000×Ga/Al–(NaO2+K2O)/CaO (b; Whalen et al., 1987)和Al2O3–FeOT/( FeOT+MgO) (c; Frost and Frost, 2011)判别图

    Figure 9. 

    图 10  La–La/V(a)和La/Yb–La判别图(b) (Schiano et al., 2010

    Figure 10. 

    图 11  二长花岗岩样品的Nb–Y–3G (a)和Nb–Y–Ce (b)图解(Eby, 1992

    Figure 11. 

  • [1]

    Bonin B, 2007. A-Type granites and related rocks: Evolution of concept, problems and prospects[J]. Lithos, 97: 1-29. doi: 10.1016/j.lithos.2006.12.007

    [2]

    Cawood P A, Buchan C, 2007. Linking accretionary orogenesis with supercontinent assembly[J]. Earth-Science Reviews, 82(3-4): 217-256. doi: 10.1016/j.earscirev.2007.03.003

    [3]

    Chen F L, Cui X Z, Lin SF, et al. , 2021. The 1.14 Ga mafic intrusions in the SW Yangtze Block, South China: Records of late Mesoproterozoic intraplate magmatism[J]. Journal of Asian Earth Sciences, 104603.

    [4]

    Chen W T, Zhou M F, Zhao X F, 2013. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: Implication for the reconstruction of the Yangtze Block in Columbia[J]. Precambrian Research, 231: 61-77. doi: 10.1016/j.precamres.2013.03.011

    [5]

    Chen W T, Sun W H, Wang W, Zhan J H, Zhou M F, 2014. “Grenvillian” intra–plate mafic magmatism in the southwestern Yangtze Block SW China[J]. Precambrian Research, 242: 138-153. doi: 10.1016/j.precamres.2013.12.019

    [6]

    Chen W T, Sun W H, Zhou M F, et al. , 2018. Ca. 1050 Ma intra-continental rift-related A-type felsic rocks in the southwestern Yangtze Block, South China[J]. Precambrian Research, 309: 22-44. doi: 10.1016/j.precamres.2017.02.011

    [7]

    Collins W J, Beams S D, White A, et al. , 1982. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contrib. Mineral. Petrol, 80: 189-200. doi: 10.1007/BF00374895

    [8]

    Creaser R A, Price R C, Wormald R J, 1991. A-type granites revisited: assessment of a residual-source model[J]. Geology, 19: 163-166.

    [9]

    Cui X Z, Lin S F, Wang J, et al. , 2021. Latest Mesoproterozoic provenance shift in the southwestern Yangtze Block, South China: Insights into tectonic evolution in the context of the supercontinent cycle[J]. Gondwana Research, 99: 131-148. doi: 10.1016/j.gr.2021.06.022

    [10]

    Cui X Z, Wang J, Ren G M, et al. , 2020a. Paleoproterozoic tectonic evolution of the Yangtze Block: New evidence from ca. 2.36 to 2.22 Ga magmatism and 1.96 Ga metamorphism in the Cuoke complex, SW China[J]. Precambrian Research, 337: 105525. doi: 10.1016/j.precamres.2019.105525

    [11]

    Cui X Z, Wang J, Sun Z M, et al. , 2019. Early Paleoproterozoic (ca. 2.36 Ga) post-collisional granitoids in Yunnan, SW China: Implications for linkage between Yangtze and Laurentia in the Columbia supercontinent[J]. Journal of Asian Earth Sciences, 169: 308-322. doi: 10.1016/j.jseaes.2018.10.026

    [12]

    Cui X Z, Wang J, Wang X C, et al. , 2020b. Early crustal evolution of the Yangtze Block: Constraints from zircon U−Pb−Hf isotope systematics of 3.1−1.9 Ga granitoids in the Cuoke complex, SW China[J]. Precambrian Research, 106155.

    [13]

    Dall’Agnol R, de Oliveira D C, 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajas, Brazil: Implications for classification and petrogenesis of A-type granites[J]. Lithos, 93(3-4): 215-233. doi: 10.1016/j.lithos.2006.03.065

    [14]

    Deng H, Peng S B, Polat A, et al. , 2017. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for evolving tectonic settings[J]. Precambrian Research, 289: 75-94. doi: 10.1016/j.precamres.2016.12.003

    [15]

    Eby G N,1990.The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J].Lithos,26(1/2): 115–126.

    [16]

    Eby G N, 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 20: 641-644.

    [17]

    Evans D, 2013. Reconstructing pre-Pangean supercontinents[J]. Bulletin, 125(11-12): 1735-1751.

    [18]

    Frost C D, Frost B R, 2011. On ferroan (A-type) granitoids: their compositional variability and modes of origin[J]. Journal of Petrology, 52: 39-53. doi: 10.1093/petrology/egq070

    [19]

    Gao S, Yang J, Zhou L, et al. , 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 311(2): 153-182. doi: 10.2475/02.2011.03

    [20]

    耿建珍, 张健, 李怀坤, 等, 2012.10μm尺度锆石U-Pb年龄的LA-MC-ICP-MS测定[J]. 地球学报, 33(6): 877-884

    Geng J Z, Zhang J, Li H K, et al. , 2012. Ten-micron-sized Zircon U-Pb Dating Using LA-MC-ICP-MS[J]. Acta Geoscientica Sinica, 33(6): 877-884. (in Chinese with English abstract)

    [21]

    耿元生, 杨崇辉, 杜利林, 等, 2007. 天宝山组形成时代和形成环境—锆石SHRIMP U-Pb年龄和地球化学证据[J]. 地质论评, 53(4): 556-563

    Geng Y S, Yang C H, Du L L, et al. , 2007. Chronology and Tectonic EnVironment of the Tianbaoshan Formation: New EVidence from Zircon SHRIMP U-Pb Age and Geochemistry[J]. Geological Review, 53(4): 556-563. (in Chinese with English abstract)

    [22]

    耿元生, 旷红伟, 柳永清, 等, 2017. 扬子地块西北缘中元古代地层的划分与对比[J]. 地质学报, 91(10): 2151-2174

    Geng Y S, Kuang H E, Liu Y Q, et al. , 2017. Subdivisio and Correlation of the Mesoproterozoic Stratigraphyin the Wesrern and Northern Margins of Yangtze Block[J]. Acta Geologica Sinica, 91(10): 2151-2174. (in Chinese with English abstract)

    [23]

    Greentree M R, Li Z X, Li X H, et al. , 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 151(1): 79-100.

    [24]

    Greentree M R, Li Z X, 2008. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 33(5): 289-302.

    [25]

    Hoffmann J E, Münker C, Næraa T, et al. , 2011. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs[J]. Geochimica et Cosmochimica Acta, 75(15): 4157-4178. doi: 10.1016/j.gca.2011.04.027

    [26]

    Hoskin P W O, Schaltegger U, 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. doi: 10.2113/0530027

    [27]

    Hu P Y, Zhai Q G, Wang J, et al. , 2017. The Shimian ophiolite in the western Yangtze Block, SW China: Zircon SHRIMP U-Pb ages, geochemical and Hf-O isotopic characteristics, and tectonic implications[J]. Precambrian Research, 298: 107-122. doi: 10.1016/j.precamres.2017.06.005

    [28]

    Huang M D, Cui X Z, Lin S F, et al. , 2021. The ca. 1.18–1.14 Ga A-type granites in the southwestern Yangtze Block, South China: New evidence for late Mesoproterozoic continental rifting[J]. Precambrian Research, 363: 106358. doi: 10.1016/j.precamres.2021.106358

    [29]

    蒋小芳, 王生伟, 廖震文, 等, 2013. 元谋县路古模组变质基性火山岩锆石的U-Pb年龄及其对苴林群沉积时代的制约[J]. 地层学杂志, 37(4): 624-625

    Jiang X F, Wang S W, Liao Z W, et al. , 2013. Zircon U-Pb age of metamorphic basic volcanic rocks from Lugumo Formation in Yuanmou County and its restriction on the sedimentary age of Juolin Group[J]. Journal of Stratigraphy, 37(4): 624-625. (in Chinese with English abstract)

    [30]

    King P L, White A J R, Chappell B W, et al. , 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 38: 371-391. doi: 10.1093/petroj/38.3.371

    [31]

    李复汉, 覃嘉铭, 申玉连, 等, 1988. 康滇地区的前震旦系[M]. 重庆: 重庆出版社, 1−396

    Li F H, Qín J M, Shen Y L, et al. , 1988. Pre Sinian System in Kangdian Area[M]. Chongqing: Chongqing Publishing House, 1−396. (in Chinese with English abstract)

    [32]

    Li Z X,Li X H,Zhou H W, et al., 2002.Grenvillian continental collision in southChina:new SHRIMP U-Pb zircon result and implication for the configurati on of Rodinia. Geology, 30(2):163–166.

    [33]

    Li Z X, Li X X, Kinny P D, et al. , 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China[J]. Earth and Planetary Science Letter, 173: 173-181.

    [34]

    Li Z X, Bogddanova S V, Collins A S, et al. , 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 160(1): 179-210.

    [35]

    Liu Y S, Gao S, Hu Z C, et al. , 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082

    [36]

    Liu Y S, Hu Z C, Zong K Q, et al. , 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    [37]

    Ludwig K R, 2003. User's Manual for Isoplot 3.0: Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 4: 1-70.

    [38]

    Patiño Douce A E, 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 25: 743-746.

    [39]

    Qiu X F, Ling W L, Liu X M, et al. , 2011. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research, 191(3): 101-119.

    [40]

    Qiu Y M, Gao S, Mcnaughton N J, et al. , 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 28(1): 11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2

    [41]

    Rudnick R, Gao S, 2003. Composition of the continental crust[J]. Treatise on Geochemistry, 3: 659.

    [42]

    Schiano P, Monzier M, Eissen J P, et al. , 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes[J]. Petrology, 160: 297-312.

    [43]

    Skjerlie K P, Johnston A D, 1993. Fluid-absent melting behavior of F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites[J]. Journal of Petrology, 34: 785-815. doi: 10.1093/petrology/34.4.785

    [44]

    Sun S S, Mcdonough W F, 1989. In magmatism in the ocean basins [M]. London: Geological Society Special Publication.

    [45]

    王冬兵, 孙志明, 尹福光, 等, 2012. 扬子地块西缘河口群的时代来自火山岩锆石LA—ICP—MSU-Pb年龄的证据[J]. 地层学杂志, 36(3): 630-635

    Wang D B, Sun Z M, Yin F G, et al. , 2012. Geochronology of the Hekou Group on the western margin of the Yangtze Block: Evidence from zircon LA–ICP–MS U–Pb dating of volcanic rocks[J]. Journal of Stratigraphy, 36(3): 630-635. (in Chinese with English abstract)

    [46]

    王生伟, 廖震文, 孙晓明, 等, 2013. 会东菜园子花岗岩的年龄、地球化学——扬子地台西缘格林威尔造山运动的机制探讨[J]. 地质学报, 87(1): 54-70

    Wang S W, Liao Z W, Sun X M, et al. , 2013. Age and Geochemistry of the Caiyuanzi Granite in Siehuan, SW China: Mechanism of the Grenvillian Orogenic Movement in the Western Margin of Yangtze Block[J]. Acta Geologica Sinica, 87(1): 54-70. (in Chinese with English abstract)

    [47]

    王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 36(5): 714-735

    Wang X L, Zhou J C, Chen X, et al. , 2017. Formation and Evolution of the Jiangnan Orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735. (in Chinese with English abstract)

    [48]

    Wang Y J, Zhu W G, Huang H Q, et al. , 2019. Ca. 1.04 Ga hot Grenville granites in the western Yangtze Block, southwest China[J]. Precambrian Research, 328: 217-234. doi: 10.1016/j.precamres.2019.04.024

    [49]

    Watson E B, Harrison T M, 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X

    [50]

    Whalen J B, Currie K L, Chappell B W, 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407-419. doi: 10.1007/BF00402202

    [51]

    Wu F Y, Sun D Y, Li H M, et al. , 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187: 143-173. doi: 10.1016/S0009-2541(02)00018-9

    [52]

    吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604.

    Wu Y B, Zheng Y F, 2004. Genetic Mineralogy of Zircons and Its Constraints on U-Pb Age Interpretation[J]. Chinese Scientific Bulletin, 49(16): 1589-1604. (in Chinese with English abstract)

    [53]

    Wu Y B, Zhou G Y, Gao S, et al. , 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 254: 73-86. doi: 10.1016/j.precamres.2014.08.004

    [54]

    杨崇辉, 耿元生, 杜利林, 等, 2009. 扬子地块西缘Grenville期花岗岩的厘定及其地质意义[J]. 中国地质, 36(03): 647-657

    Yang C H, Geng Y S, Du L L, et al. , 2009. The identification of the Grenvillian granite on the western margin of the Yangtze Block and its geological implications[J]. Geology in China, 36(03): 647-657. (in Chinese with English abstract)

    [55]

    Yang J H, Wu F Y, Chung S L, et al. , 2007. A hybrid origin for the Qianshan A-type granite, northeast China: geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 89: 89-106.

    [56]

    Yao J L, Cawood P A, Shu L S, et al. , 2019. Jiangnan Orogen, South China: A ~970–820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 196: 102872. doi: 10.1016/j.earscirev.2019.05.016

    [57]

    Zhang C L, Zou H B, Zhu Q B, et al. , 2015. Late Mesoproterozoic to early Neoproterozoic ridge subduction along southern margin of the Jiangnan Orogen: New evidence from the Northeastern Jiangxi Ophiolite (NJO), South China[J]. Precambrian Research, 268: 1-15. doi: 10.1016/j.precamres.2015.07.005

    [58]

    Zhao G C, Cawood P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54. doi: 10.1016/j.precamres.2012.09.017

    [59]

    Zhao G C, Cawood P A, Wilde S A, et al. , 2002. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 59(1-4): 125-162. doi: 10.1016/S0012-8252(02)00073-9

    [60]

    Zhao X F, Zhou M F, Li J W, et al. , 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 182: 57-69. doi: 10.1016/j.precamres.2010.06.021

    [61]

    Zhao X F, Zhou M F, 2011. Fe-Cu deposits in the Kangdian region, SW China: a Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province[J]. Mineralium Deposita, 46(7): 731-747. doi: 10.1007/s00126-011-0342-y

    [62]

    Zheng J P, Griffin W L, O’Reilly S Y, et al. , 2006. Widespread Archean basement beneath the Yangtze craton[J]. Geology, 34: 417-420.

    [63]

    Zhou G, Wu Y, Gao S, et al. , 2015. The 2.65 Ga A-type granite in the northeastern Yangtze craton: Petrogenesis and geological implications[J]. Precambrian Research, 258: 247-259. doi: 10.1016/j.precamres.2015.01.003

    [64]

    Zhou G, Wu Y, Li L, et al. , 2018. Identification of ca. 2.65 Ga TTGs in the Yudongzi complex and its implications for the early evolution of the Yangtze Block[J]. Precambrian Research, 314: 240-263. doi: 10.1016/j.precamres.2018.06.011

    [65]

    Zhou G, Wu Y, Wang H, et al. , 2017. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze Block[J]. Precambrian Research, 292: 57-74. doi: 10.1016/j.precamres.2017.02.005

    [66]

    Zhou M F, Ma Y X, Yan D P, et al. , 2006. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 144(1): 19-38.

    [67]

    Zhou M F, Ma Y X, Yan D P, et al. , 2002. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196(1-2): 51-67. doi: 10.1016/S0012-821X(01)00595-7

    [68]

    Zhu W G, Zhong H, Li Z X, et al. , 2016. SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca. 1.0 Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance[J]. Precambrian Research, 273: 67-89. doi: 10.1016/j.precamres.2015.12.011

  • 加载中

(11)

计量
  • 文章访问数:  949
  • PDF下载数:  133
  • 施引文献:  0
出版历程
收稿日期:  2021-08-18
修回日期:  2022-07-31
录用日期:  2022-08-02
刊出日期:  2023-09-30

目录