成冰纪全球冰期事件的环境效应研究进展

郎咸国, 陈家乐. 2023. 成冰纪全球冰期事件的环境效应研究进展. 沉积与特提斯地质, 43(3): 651-660. doi: 10.19826/j.cnki.1009-3850.2023.06001
引用本文: 郎咸国, 陈家乐. 2023. 成冰纪全球冰期事件的环境效应研究进展. 沉积与特提斯地质, 43(3): 651-660. doi: 10.19826/j.cnki.1009-3850.2023.06001
LANG Xianguo, CHEN Jiale. 2023. Research progress on environmental effects of the Cryogenian global glaciation. Sedimentary Geology and Tethyan Geology, 43(3): 651-660. doi: 10.19826/j.cnki.1009-3850.2023.06001
Citation: LANG Xianguo, CHEN Jiale. 2023. Research progress on environmental effects of the Cryogenian global glaciation. Sedimentary Geology and Tethyan Geology, 43(3): 651-660. doi: 10.19826/j.cnki.1009-3850.2023.06001

成冰纪全球冰期事件的环境效应研究进展

  • 基金项目: 国家自然科学基金(41802024)
详细信息
    作者简介: 郎咸国(1986—),男,研究员,主要从事沉积学教学与科研工作。E-mail:langxianguo19@cdut.edu.cn
  • 中图分类号: P58

Research progress on environmental effects of the Cryogenian global glaciation

  • 成冰纪全球冰期是地球历史上最极端的冰室气候事件,冰川作用波及赤道区域,全球可能都遭受了冰封,海洋广泛缺氧,生物演化进程迟滞。然而,冰期结束之后,大气氧浓度迅速升高,海洋发生逐步氧化,大型带刺疑源类和真核多细胞藻类在埃迪卡拉纪开始繁盛,出现最早的动物,地表生物圈发生了翻天覆地的变化。显然,成冰纪全球冰期事件是地球系统演化的重要转折。认识冰期的环境效应是认识埃迪卡拉纪生物演化的关键,也是打开地表宜居环境演化的钥匙。本文总结了近年来成冰纪全球冰期的气候假说、冰期沉积特征、海洋氧化还原条件及冰期后的大气与海洋环境剧变等方面的研究进展,简要分析了全球冰期研究中存在的问题,并对该领域未来研究提出了展望与建议。

  • 加载中
  • 图 1  雪球地球冰期结束后真核生物辐射演化

    Figure 1. 

    图 2  华南南沱组岩石类型

    Figure 2. 

    图 3  华南南沱组沉积序列与演化(Lang et al., 2018a)

    Figure 3. 

    图 4  雪球地球结束后的大气与海洋环境变化

    Figure 4. 

  • [1]

    Abbot D S, Pierrehumbert R T, 2010. “Mudball: Surface dust and Snowball Earth deglaciation”[J]. Journal of Geophysical Research: Atmospheres. 115: D03104. doi: 10.1029/2009JD012007.

    [2]

    Abbot D S, Voigt A, Koll D , 2011. The Jormungand global climate state and implications for Neoproterozoic glaciations[J]. Journal of Geophysical Research: Atmospheres, 116(D18): 4121-4132.

    [3]

    Allen P A , Etienne J L, 2008. Sedimentary challenge to Snowball Earth[J]. Nature geocience, 1(12): 817–825. doi: 10.1038/ngeo355

    [4]

    储雪蕾, 2004. 新元古代的“雪球地球”[J]. 矿物岩石地球化学通报, 23(3): 233-238 doi: 10.3969/j.issn.1007-2802.2004.03.010

    Chu X L, 2004. Snowball Earth during the Neoproterozoic [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 23(3): 233-238. doi: 10.3969/j.issn.1007-2802.2004.03.010

    [5]

    崔晓庄, 江新胜, 王剑, 等, 2014. 滇中新元古代裂谷盆地充填序列及演化模式: 对Rodinia超大陆裂解的响应[J]. 沉积学报, 32(3): 399-409 doi: 10.14027/j.cnki.cjxb.2014.03.004

    Cui X Z, Jiang X S, Wang J, et al. , 2014. Filling sequence and evolution model of the Neoproterozoic rift basin in central Yunnan Province, South China: Response to the breakup of Rodinia Supercontinent[J]. Acta Sedimentologica Sinica, 32(3): 399-409. doi: 10.14027/j.cnki.cjxb.2014.03.004

    [6]

    Eyles N, Januszczak N, 2004. ‘Zipper−rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma[J]. Earth−Science Reviews, 65(1–2): 1−73.

    [7]

    冯永, 顾尚义, 吴忠银, 等, 2021. 贵州五河南沱组形成的氧化还原环境: 地球化学与矿物学证据[J]. 矿物学报, 41(1): 33-44 doi: 10.16461/j.cnki.1000-4734.2020.40.150

    Feng Y, Gu S Y, WU Z Y, et al., 2021. Oceanic redox condition of the Nantuo Formation at the Wuhe profile, Guizhou Province: Evidences from its geochemistry and mineralogy [J]. Acta Mineralogica Sinica, 41(1): 33-44. doi: 10.16461/j.cnki.1000-4734.2020.40.150

    [8]

    He R, Lang X, Shen B, 2021. A rapid rise of seawater δ13C during the deglaciation of the Marinoan Snowball Earth[J]. Global and Planetary Change, 207.

    [9]

    Hoffman P F, 2017a. Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances, 3: e1600983. doi: 10.1126/sciadv.1600983

    [10]

    Hoffman P F, Kaufman A J, Halverson G P, et al., 1998. A Neoproterozoic snowball earth[J]. Science, 281: 1342–1346. doi: 10.1126/science.281.5381.1342

    [11]

    Hoffman P F, 2017b. Sedimentary depocenters on Snowball Earth: Case studies from the Sturtian Chuos Formation in northern Namibia[J]. Geosphere, 13(3): 811–837. doi: 10.1130/GES01457.1

    [12]

    Hu J, 2020. Glacial origin of the Cryogenian Nantuo Formation in eastern Shennongjia area (South China): Implications for macroalgal survival[J]. Precambrian Research, 351.

    [13]

    Huang J, Chu X, Jiang G, et al., 2011. Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the c. 635 Ma Doushantuo cap carbonate[J]. Journal of the Geological Society, 168(3): 805-816. doi: 10.1144/0016-76492010-132

    [14]

    Huang K J, 2016. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation[J]. Proceedings of the National Academy of Sciences, 113: 14904–14909. doi: 10.1073/pnas.1607712113

    [15]

    Hyde W T, Crowley T J, Baum S K, et al., 2000. Neoproterozoic ‘snowball Earth’simulations with a coupled climate/ice-sheet model[J]. Nature, 405(6785): 425–429. doi: 10.1038/35013005

    [16]

    Jiang G, Kennedy M J, Christie-Blick N, et al., 2006. Stratigraphy, Sedimentary Structures, and Textures of the Late Neoproterozoic Doushantuo Cap Carbonate in South China[J]. Journal of Sedimentary Research, 76(7): 978–995. doi: 10.2110/jsr.2006.086

    [17]

    Johnson, B W, Poulton S W, Goldblatt C, 2017. Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth [J]. Nature Communications, 8: 1316

    [18]

    Kirschvink J L, 1992. Late Proterozoic low−latitude global glaciation: the snowball Earth. The Proterozoic Biosphere: a multidisciplinary study[M]. Cambridge University Press, New York, 51–52.

    [19]

    Lang X, 2018a. Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China[J]. Precambrian Research, 310: 243–255. doi: 10.1016/j.precamres.2018.03.004

    [20]

    Lang X, 2018b. Transient marine euxinia at the end of the terminal Cryogenian glaciation[J]. Nature Communications, 9(1): 3019. doi: 10.1038/s41467-018-05423-x

    [21]

    Lang X, 2016. Ocean oxidation during the deposition of basal Ediacaran Doushantuo cap carbonates in the Yangtze Platform, South China[J]. Precambrian Research, 281: 253–268. doi: 10.1016/j.precamres.2016.06.006

    [22]

    Le Heron D P, Tofaif S, Vandyk T, et al., 2017. A diamictite dichotomy: Glacial conveyor belts and olistostromes in the Neoproterozoic of Death Valley, California, USA[J]. Geology, 45(1): 31–34. doi: 10.1130/G38460.1

    [23]

    Leather J, Allen P A, Brasier M D, et al., 2002. Neoproterozoic snowball Earth under scrutiny: Evidence from the Fiq glaciation of Oman[J]. Geology, 30(10): 891–894. doi: 10.1130/0091-7613(2002)030<0891:NSEUSE>2.0.CO;2

    [24]

    Lechte M, Wallace M, 2016. Sub–ice shelf ironstone deposition during the Neoproterozoic Sturtian glaciation[J]. Geology, 44(11): 891-894. doi: 10.1130/G38495.1

    [25]

    Lechte M A, Wallace W M, Hood S A, et al., 2019. Subglacial meltwater supported aerobic marine habitats during Snowball Earth[J]. 116(51): 25478−25483.

    [26]

    Ma H, Shen B, Lang X, et al., 2022. Active biogeochemical cycles during the Marinoan global glaciation [J]. Geochimica et Cosmochimica Acta 321(3): 155-169.

    [27]

    McKay C, 2000. Thickness of tropical ice and photosynthesis on a snowball earth[J]. Geophysical Research Letters, 27(14): 2153-2156. doi: 10.1029/2000GL008525

    [28]

    Nascimento D B, Ribeiro A, Trouw R A J, et al., 2016. Stratigraphy of the Neoproterozoic Damara Sequence in northwest Namibia: Slope to basin sub-marine mass-transport deposits and olistolith fields[J]. Precambrian Research, 278: 108–125. doi: 10.1016/j.precamres.2016.03.005

    [29]

    Pollard D, Kasting J F, 2005. Snowball Earth: A thin−ice solution with flowing sea glaciers[J]. Journal of Geophysical Research: Oceans, 110(C7).

    [30]

    Rooney A D, Strauss J V, Brandon A D, et al., 2015. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations[J]. Geology, 43(5): 459–462. doi: 10.1130/G36511.1

    [31]

    Sahoo S K, 2012. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 489(7417): 546–549. doi: 10.1038/nature11445

    [32]

    Shen W, 2022. Secular variation in seawater redox state during the Marinoan Snowball Earth event and implications for eukaryotic evolution[J]. Geology, 50(11): 1239-1244. doi: 10.1130/G50147.1

    [33]

    Song H, An Z, Ye Q, et al., 2023. Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation [J]. Nature Communications, 14: 1564.

    [34]

    Williams G E, 2008. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: Principles and tests[J]. Earth-Science Reviews, 87(3): 61-93.

    [35]

    闫斌, 朱祥坤, 唐索寒, 等, 2010. 广西新元古代BIF的铁同位素特征及其地质意义[J]. 地质学报, 84(7): 1080-1086 doi: 10.19762/j.cnki.dizhixuebao.2010.07.011

    Yan B, Zhu X K, Tang S H, et al., 2010. Fe Isotopic Characteristics of the Neoproterozoic BIF in Guangxi Province and its Implications [J]. Acta Sedimentologica Sinica, 84(7): 1080-1086. doi: 10.19762/j.cnki.dizhixuebao.2010.07.011

    [36]

    Ye Q, 2015. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth[J]. Geology, 43(6): 507–510. doi: 10.1130/G36640.1

    [37]

    Yuan X, Chen Z, Xiao S, et al., 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes[J]. Nature, 470(7334): 390–393. doi: 10.1038/nature09810

    [38]

    Zhang S, Jiang G, Han Y, 2008. The age of the Nantuo Formation and Nantuo glaciation in South China[J]. Terra Nova, 20(4): 289–294. doi: 10.1111/j.1365-3121.2008.00819.x

    [39]

    张启锐, 储雪蕾, 2006. 扬子地区江口冰期地层的划分对比与南华系层型剖面[J]. 地层学杂志, 30(4): 306-314 doi: 10.3969/j.issn.0253-4959.2006.04.002

    Zhang Q R, Chu X L, 2006. The Stratigraphic Classification and Correlation of the Jiangkou Glaciation in the Yangtze Block and the Stratotype Section of the Nanhuan System [J]. Journal of Stratigraphy, 30(4): 306-314. doi: 10.3969/j.issn.0253-4959.2006.04.002

    [40]

    Zhou C, Huyskens M H, Lang X, et al., 2019. Calibrating the terminations of Cryogenian global glaciations[J]. Geology, 47(3): 251-254. doi: 10.1130/G45719.1

  • 加载中

(4)

计量
  • 文章访问数:  1305
  • PDF下载数:  132
  • 施引文献:  0
出版历程
收稿日期:  2023-05-14
修回日期:  2023-06-02
录用日期:  2023-06-02
刊出日期:  2023-09-30

目录