Lithofacies paleogeographic characteristics of the Middle Cambrian Shayilike Formation, Tarim Basin, NW China
-
摘要:
沙依里克组是塔里木盆地寒武系油气勘探中的重要层位,沉积相的精细刻画依然是目前制约该层位油气勘探取得突破的关键因素。本次研究在大量岩心观察、230块岩石薄片鉴定分析的基础上,总结了研究区内10种典型的岩相组合类型,并识别4种典型地震相带特征,进而分析了沙依里克组发育的沉积相类型及其分布特征。结果表明:(1)塔里木盆地中寒武统沙依里克组发育蒸发台地、局限台地、开阔台地、台地边缘、斜坡相及盆地相6种沉积相,进一步可划分为7种亚相及15种微相;(2)结合地层厚度展布、地震资料,编制了中寒武统沙依里克组岩相古地理图,建立了碳酸盐岩台地到斜坡–盆地的沉积相模式。对沙依里克组岩相古地理的深入研究,可进一步明确蒸发岩类盖层与盐间白云岩储层之间的良好配置关系,为盐间勘探领域新突破提供理论支撑。
Abstract:The Shayilike Formation is an important horizon in Cambrian oil and gas exploration in the Tarim Basin, where and the fine-scale delineation of sedimentary facies remains the key factor restricting the breakthrough of oil and gas exploration in this horizon. Based on a large number of core observations and petrography on 230 thin sections, this study has summarized 10 typical lithofacies assemblages in the study area and identified 4 typical seismic facies zone characteristics. Furthermore, the sedimentary facies types and distribution characteristics of the Shayilike Formation were analyzed. The results show that: (1) the Shayilike Formation of middle Cambrian age in the Tarim Basin consists of 6 sedimentary facies, including evaporative platform, limited platform, open platform, platform margin and slope-basin facies, which can be further divided into 7 subfacies and 15 microfacies. (2) Combined with stratigraphic thickness distribution and seismic data, the lithofacies paleogeography map of the Middle Cambrian Shayilike Formation was compiled, and the sedimentary facies model from carbonate platform to slope basin was established. Further study of the lithofacies paleogeography of the Shayilike Formation can clarify the relationship between evaporite cap rocks and intersalt dolomite reservoirs and provide theoretical support for further breakthroughs in the field of intersalt exploration.
-
-
图 1 塔里木盆地构造分区简图(a);南北向构造-地层结构剖面(b);地层综合柱状图(c)(据朱永进等,2020修改)
Figure 1.
图 4 新和1井单井沉积相柱状图(a)和中寒1井单井沉积相柱状图(b)(图例参见图5)
Figure 4.
图 5 塔里木盆地中寒武统沙依里克组连井剖面(见图1B-B`)
Figure 5.
图 6 沙依里克组地层残余厚度(据陈永权等,2015)
Figure 6.
图 7 钻井-地震格架大剖面(C-C'和D-D'位置见图6)
Figure 7.
图 9 镶边碳酸盐岩台地-斜坡沉积模式(见图8E-E`)
Figure 9.
表 1 沙依里克组岩石类型及特征
Table 1. Rock types and characteristics of Shayilike Formation
岩石类型 主要特征 分布位置 蒸发岩类 盐岩 含较多硬石膏(>40%),呈片状
(图2a)和田2、乔探1、和4、新和1、康2、楚探1、方1、柯探1、中深5、中寒1 石膏岩 纤维状硬石膏成分约占80%,含微量它形白云石(<5%)(图2b) 和田2、乔探1、舒探1、
新和1、康2、楚探1、方1、柯探1白云岩类 泥质白云岩 白云石表面污浊,白云石晶体呈半自形-自形,粒间充填泥质(图2c) 乔探1、和4、康2、楚探1、中深5、中寒1、轮探1、英买36 粉-细晶白云岩 白云石自形程度较好,为菱形或似菱形,呈镶嵌式胶结(图2d) 和田2、和4、新和1、柯探1、中深5、
轮探1、中寒1、英买36、玉龙6、塔深1藻白云岩 部分暗色的团块状藻粘结颗粒(图2e),基质为亮晶的粉晶白云石胶结 中深5、中深1、塔深1、轮探1 砂屑/颗粒状白云岩 颗粒主要分为两种类型,一类粒径为0.08~0.12 mm(图2f),偶尔呈现残余状(<15%),另一类呈椭球状、次圆状,长轴粒径可达0.18~0.35 mm,常由泥-粉晶白云石晶粒充填,零星可见黄铁矿
(图2g),颗粒间为亮晶白云石胶结方1、中深5、中深1、塔深1、
轮探1、玉龙6鲕粒白云岩 多为亮晶鲕粒,显微镜下可见大小相异的两类颗粒(图2h),鲕粒粒径明显大于砂屑颗粒,表明沉积时曾经历两期不同能量强度的水体扰动 塔深1 膏质白云岩 白云石多被膏化 和田2、舒探1、方1、柯探1、
中深5、轮探1、中深1、中寒1、玉龙6灰质白云岩 / 新和1 石灰岩类 白云质灰岩 可见方解石局部被白云石化,白云石自形程度较差(图2i) 和田2、乔探1、新和1、康2、
楚探1、柯探1砂屑灰岩 砂屑平均粒径为0.1 mm,局部被白云石化,发育微裂缝,裂缝中充填泥质
(图2k)新和1、柯探1 鲕粒灰岩 常见亮晶方解石胶结的残余鲕粒,同心层不发育,颗粒粒径0.07~0.15 mm,且有大面积方解石被白云石化(图2l) 新和1 泥质灰岩 / 舒探1、新和1、方1 泥岩类 泥岩 多为薄夹层产出 英买36、和4、中深5 灰质泥岩 和田2、新和1 表 2 中寒武统沙依里克组沉积相类型划分表
Table 2. Classification table of sedimentary facies types of Shayilike Formation
相 亚相 微相 主要的岩相组合 蒸发台地 蒸发潟湖 膏质潟湖、盐质潟湖 Ⅰ、Ⅱ 蒸发潮坪 膏云坪、低能砂屑滩 Ⅲ 局限台地 潮坪 (灰)云坪、泥云坪、藻云坪、砂屑滩 Ⅳ、Ⅴ 潟湖 潟湖泥、膏云坪 Ⅵ 开阔台地 台内滩 鲕粒滩、砂屑滩 Ⅶ 滩间海 云灰坪 Ⅷ 台地边缘 台缘礁滩 台缘礁、礁后滩 Ⅸ、X 斜坡 / / 盆地 / / 表 3 沙依里克组地震相带类型及特征
Table 3. Classification of seismic facies types and characteristic table of Shayilike Formation
典型地震剖面 地震相特征 主要亚相 形态结构 反射特征 席状 连续
中-低频
中-强振幅蒸发台地相—
蒸发潮坪亚相
(SF1)平行
席状高连续
低频
中-强振幅局限台地相—
潟湖亚相
(SF2)滩状
透镜状中连续
中-低频
中振幅反射开阔台地相—
台内滩亚相
(SF3)叠瓦状
前积楔状断续反射
中-低连续
中-低频
中振幅台地边缘相—
台缘礁滩亚相
(SF4) -
[1] 白莹, 李建忠, 刘伟, 等, 2021. 塔里木盆地西北部下寒武统白云岩特征及多重白云石化模式[J]. 石油学报, 42(9): 1174-1191 doi: 10.7623/syxb202109005
Bai Y, Li J Z, Liu W, et al. , 2021. Characteristics and multiple dolomitization mode of the Lower Cambrian dolomite reservoir, northwestern Tarim Basin[J]. Acta Petrolei Sinica, 42(9): 1174-1191. doi: 10.7623/syxb202109005
[2] 陈永权, 严威, 韩长伟, 等, 2015. 塔里木盆地寒武纪—早奥陶世构造古地理与岩相古地理格局再厘定——基于地震证据的新认识[J]. 天然气地球科学, 26(10): 1831-1843 doi: 10.11764/j.issn.1672-1926.2015.10.1831
Chen Y Q, Yan W, Han C W, et al. , 2015. Redefinition onstructural paleogeography and lithofacies paleogeography frameworkfrom Cambrian to Early Ordovician in the Tarim Basin: A newapproach based on seismic stratigraphy evidence[J]. Natural GasGeoscience, 26(10): 1831-1843. doi: 10.11764/j.issn.1672-1926.2015.10.1831
[3] 杜金虎, 潘文庆, 2016. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J]. 石油勘探与开发, 252(3): 327-339
Du J H, Pan W Q, 2016. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 252(3): 327-339.
[4] 樊奇, 樊太亮, 李清平, 等, 2021. 塔里木盆地寒武系膏盐岩沉积特征与发育模式[J]. 石油实验地质, 43(2): 217-226 doi: 10.11781/sysydz202102217
Fan Q, Fan T L, Li Q P, et al. , 2021. Sedimentary characteristics and development model of Cambrian gypsum-salt rocks in Tarim Basin[J]. Petroleum Geology & Experiment, 43(2): 217-226. doi: 10.11781/sysydz202102217
[5] 冯增昭, 鲍志东, 吴茂炳, 等, 2006. 塔里木地区寒武纪岩相古地理[J]. 古地理学报(4): 427−439
Feng Z Z, Bao Z D, Wu M B, et al., 2006. Cambrian lithofacies paleogeography in Tarim area[J]. Journal of Palaeogeography(4): 427−439.
[6] 高华华, 何登发, 童晓光, 等, 2017. 塔里木盆地寒武纪构造-沉积环境与原型盆地演化[J]. 现代地质, 31(1): 102-118 doi: 10.3969/j.issn.1000-8527.2017.01.009
Gao HH, He D F, Tong X G, et al. , 2017. Cambrian Tectonic-Sedimentary Environment and Prototype Basin Evolution in Tarim Basin[J]. Geoscience, 31(1): 102-118. doi: 10.3969/j.issn.1000-8527.2017.01.009
[7] Gao Z Q, Fan T L, 2015. Carbonate platform-margin architecture and its influence on Cambrian-Ordovician reef-shoal development, Tarim Basin, NW China[J]. Marine and Petroleum Geology, 68: 291-306. doi: 10.1016/j.marpetgeo.2015.08.033
[8] 顾家裕, 马锋, 季丽丹, 2009. 碳酸盐岩台地类型、特征及主控因素[J]. 古地理学报, 11(1): 21-27 doi: 10.7605/gdlxb.2009.01.004
Gu J Y, Ma F, Ji L D, 2009. Types, characteristics and main controlling factors of carbonate platform[J]. Journal of Palaeogeography, 11(1): 21-27. doi: 10.7605/gdlxb.2009.01.004
[9] 何登发, 贾承造, 李德生, 等, 2005. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 26(1): 64-77 doi: 10.3321/j.issn:0253-9985.2005.01.010
He D F, Jia C Z, Li D S, et al. , 2005. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 26(1): 64-77. doi: 10.3321/j.issn:0253-9985.2005.01.010
[10] 胡明毅, 孙春燕, 高达, 2019. 塔里木盆地下寒武统肖尔布拉克组构造-岩相古地理特征[J]. 石油与天然气地质, 40(1): 12-23
Hu M Y, Sun C Y, Gao D, 2019. Characteristics of tectonic-lithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 40(1): 12-23.
[11] 贾承造, 1997. 中国塔里木盆地构造特征与油气[M]. 北京. 石油工业出版社, 1−438.
Jia C Z, 1997. The tectonic characteristics and oil & gas in Tarim Ba−sin, China[M]. Beijing: Petroleum Industry Press: 1−200.
[12] 金振奎, 石良, 高白水, 等, 2013. 碳酸盐岩沉积相及相模式[J]. 沉积学报, 31(6): 965-979
Jin Z K, Shi L, Gao B S, et al. , 2013. Carbonate facies and facies models[J]. Acta Sedimentologica Sinica, 31(6): 965-979.
[13] Jiang L, Cai C F, Worden R H, et al. , 2016. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China[J]. Sedimentology, 63(7): 2130-2157. doi: 10.1111/sed.12300
[14] 林畅松, 李思田, 刘景彦, 等, 2011. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J]. 岩石学报, 27(1): 211-221.
Lin C S, Li S T, Liu J Y, et al., 2011. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages[J]. Acta Petrologica Sinica, 27(1): 210-218.
[15] 刘伟, 张光亚, 潘文庆, 等, 2011. 塔里木地区寒武纪岩相古地理及沉积演化[J]. 古地理学报, 13(5): 529-538 doi: 10.7605/gdlxb.2011.05.007
Liu W, Zhang G Y, Pan W Q, et al. , 2011. Lithofacies palaeogeography and sedimentary evolution of the Cambrian in Tarim area[J]. Journal of Palaeogeography, 13(5): 529-538. doi: 10.7605/gdlxb.2011.05.007
[16] 倪新锋, 陈永权, 王永生, 等, 2020. 塔里木盆地轮南地区深层寒武系台缘带新认识及盐下勘探区带——基于岩石学、同位素对比及地震相的新证据[J]. 海相油气地质, 25(4): 289-302 doi: 10.3969/j.issn.1672-9854.2020.04.001
Ni X F, Chen Y Q, Wang Y S, et al. , 2020. Recognition of platform margin and subsalt exploration prospect of deep-buried Cambrian in Lunnan area of Tarim Basin, Northwest China. new understanding based on evidence of petrology, isotope comparison and seismic facies[J]. Marine Origin Petroleum Geology, 25(4): 289-302. doi: 10.3969/j.issn.1672-9854.2020.04.001
[17] 倪新锋, 陈永权, 朱永进, 等, 2015. 塔北地区寒武纪深层白云岩构造-岩相古地理特征及勘探方向[J]. 岩性油气藏, 27(5): 135-143 doi: 10.3969/j.issn.1673-8926.2015.05.023
Ni X F, Chen Y Q, Zhu Y J, et al. , 2015. Tectonic-lithofacies palaeogeography characteristics of Cambrian deep dolomite and exploration prospects in northern Tarim Basin[J]. Lithologic Reservoirs, 27(5): 135-143. doi: 10.3969/j.issn.1673-8926.2015.05.023
[18] 乔博, 高志前, 樊太亮, 等, 2014. 塔里木盆地寒武系台缘结构特征及其演化[J]. 断块油气田, 21(1): 7-11
Qiao B, Gao Z Q, Fan T L, et al. , 2014. Structural Characteristics and Evolution of Cambrian Platform Margin in Tarim Basin [J]. Fault-Block Oil Gas Field, 21(1): 7-11.
[19] 沈安江, 郑剑锋, 陈永权, 等, 2016. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J]. 石油勘探与开发, 43(3): 340-349
Shen A J, Zheng J F, Chen Y Q, et al. , 2016. Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 43(3): 340-349.
[20] 谭志远, 侯学文, 魏继生, 等, 2021. 四川盆地下三叠统嘉陵江组主要成盐期岩相古地理特征[J]. 沉积与特提斯地质, 41(4): 563-572
Tan Z Y, Hou X W, Wei J S, et al. , 2021. Sedimentary facies and palaeogeography of the Lower Triassic Jialingjiang Formation in Sichuan Basin during the salt-forming period[J]. Sedimentary Geology and Tethyan Geology, 41(4): 563-572.
[21] 田雷, 崔海峰, 刘军, 等, 2018. 塔里木盆地早、中寒武世古地理与沉积演化[J]. 石油与天然气地质, 39(5): 1011-1021
Tian L, Cui H, Liu J, et al. , 2018. Early-Middle Cambrian paleogeography and depositional evolution of Tarim Basin[J]. Oil & Gas Geology, 39(5): 1011-1021.
[22] 魏国齐, 朱永进, 郑剑锋, 等, 2021. 塔里木盆地寒武系盐下构造-岩相古地理、规模源储分布与勘探区带评价[J]. 石油勘探与开发, 48(6): 1114-1126
Wei G Q, Zhu Y J, Zheng J F, et al. , 2021. Tectoniclithofacies paleogeography, large-scale source-reservoir distribution and exploration zones of Cambrian subsalt formation, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 48(6): 1114-1126.
[23] 杨海军, 2015. 塔里木盆地下古生界内幕白云岩勘探认识与勘探方向[J]. 天然气地球科学, 26(7): 1213-1223.
Yang H J, 2015. Exploration acknowledgement and exploration direction research on Low Proterozoic inner dolostones[J]. Tarim Basin. Natural Gas Geoscience, 26(7): 1213-1224.
[24] 杨海军, 陈永权, 潘文庆, 等, 2021. 塔里木盆地南华纪—中寒武世构造沉积演化及其盐下勘探选区意义[J]. 中国石油勘探, 26(4): 84-98
Yang H J, Chen Y Q, Pan W Q, et al. , 2021. Study on tectonic and sedimentary evolution during the Nanhua Middle Cambrian and its significance for subsalt exploration, Tarim Basin[J]. China Petroleum Exploration, 26(4): 84-98.
[25] 杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 25(2): 62-72 doi: 10.3969/j.issn.1672-7703.2020.02.007
Yang H J, Chen Y Q, Tian J, et al. , 2020. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 25(2): 62-72. doi: 10.3969/j.issn.1672-7703.2020.02.007
[26] 易士威, 李明鹏, 郭绪杰, 等, 2019. 塔里木盆地寒武系盐下勘探领域的重大突破方向[J]. 石油学报, 40(11): 1281-1295
Yi S W, Li M P, Guo X J, et al. , 2019. Breakthrough direction of Cambrian presalt exploration fields in Tarim Basin[J]. Acta Petrolei Sinica, 40(11): 1281-1295.
[27] 张水昌, 张宝民, 李本亮, 等, 2011. 中国海相盆地跨重大构造期油气成藏历史: 以塔里木盆地为例[J]. 石油勘探与开发, 38(1): 1-12 doi: 10.1016/S1876-3804(11)60010-4
Zhang S C, Zhang B M, Li B L, et al. , 2011. History of hydrocarbon accumulations spanning important tectonic phases in marine sedimentary basins of China: Taking the Tarim Basin as an example[J]. Petroleum Exploration and Development, 38(1): 1-12. doi: 10.1016/S1876-3804(11)60010-4
[28] 张天付, 黄理力, 倪新锋, 等, 2020. 塔里木盆地柯坪地区下寒武统吾松格尔组岩性组合及其成因和勘探意义——亚洲第一深井轮探1井突破的启示[J]. 石油与天然气地质, 41(5): 928-940
Zhang T F, Huang L L, Ni X F, et al. , 2020. Lithological combination, genesis and exploration significance of the Lower Cambrian Wusonggeer Formation of kalpin area in Tarim Basin: Insight through the deepest Asian onshore well-Well Luntan 1[J]. Oil & Gas Geology, 41(5): 928-940.
[29] 赵文智, 沈安江, 胡素云, 等, 2012. 塔里木盆地寒武—奥陶系白云岩储层类型与分布特征[J]. 岩石学报, 28(3): 758−768
Zhao W Z, Shen A J, Hu S Y, et al., 2012. Types and distributional features of Cambrian Ordovician dolostone reservoirs in Tarim Basin, northwestern China[J]. Acta Petrologica Sinica, 28(3): 758−768.
[30] 赵宗举, 罗家洪, 张运波, 等, 2011. 塔里木盆地寒武纪层序岩相古地理[J]. 石油学报, 32(6): 937-948 doi: 10.7623/syxb201106003
Zhao Z J, Luo J H, Zhang Y B, et al, 2011. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin[J]. Acta Petrolei Sinica, 32(6): 937-948. doi: 10.7623/syxb201106003
[31] 朱永进, 沈安江, 刘玲利, 等, 2020. 塔里木盆地晚震旦世—中寒武世构造沉积充填过程及油气勘探地位[J]. 沉积学报, 38(2): 398-410
Zhu Y J, Shen A J, Liu L L, et al. , 2020. Tectonic-sedimentary Filling History through the Later Sinian to the Mid-Cambrian in Tarim Basin and Its Explorational Potential[J]. Acta Sedimentologica Sinica, 38(2): 398-410.
-