Progress in the applications of the Paleobiology Database in paleogeographic reconstruction
-
摘要:
大数据时代的信息技术革命带来了科学研究的数字化变革,作为地球科学领域开展数字化科研重要里程碑的古生物数据库Paleobiology Database(PBDB),为古地理研究提供了重要的数据支撑。通过调研PBDB数据库平台内容及其在古地理重建中的应用实例,总结PBDB数据库目前在古地理重建中存在的问题,展望其未来的发展方向。结果表明:(1)古生物数据库包含大量的可溯源数据,是古生物领域研究的重要信息来源和成果交流平台,其中PBDB数据库具有可视化特点,能提供多种数据检索和下载方式,是古地理重建工作的首选古生物数据库;(2)PBDB数据库的分类学和采集记录数据,在约束古地理位置、修订古气候带划分方案、定量古高程古水深、校正古海岸线等古地理重建领域具有明显优势;(3)古生物数据库偏向于古生物研究领域,且古生物记录的历史可能存在偏差和不完整性,其在古地理重建中起辅助约束作用,而非绝对途径;(4)如何实现古生物数据库中数据的自动分类、筛选,如何精确约束古板块位置的相对经度,如何提升古气候、古高程、古水深等研究的精确性,是应用PBDB数据库进行古地理重建的重要发展方向。
Abstract:The information technology revolution in the era of big data has brought about the digital evolution of scientific research. As a significant milestone of digital scientific research in earth science, the Paleobiology Database (PBDB) can provide essential data support for paleogeographic research. Through the investigation of the content of the PBDB platform and its applications in paleogeographic reconstruction, the current problems in the paleogeographic reconstruction of PBDB are summarized, and its future development is anticipated. The results show that: (1) Paleontology database contains a large number of traceable data, which is an important information source and exchange platform for paleontology research. The PBDB includes a visualization function, can provide a variety of data retrieval and download methods, and is the preferred paleontology database for paleontology reconstruction work. (2) The classification and collection data of the PBDB have may applications in the field of paleogeographic reconstruction, such as constraining paleoplates locations, revising the division scheme of paleoclimatic zones, quantifying paleolatitudes and paleodepths, and correcting paleocoastlines. (3) The paleontological database is more suitable for the field of paleontological research, and the history of paleontological records may be biased and incomplete, so it plays an auxiliary constraint role in paleogeographic reconstruction, rather than an absolute approach. (4) Future developments and applications of paleogeography reconstruction using PBDB include automatic classification and screening of data, methods to accurately constrain the relative longitude of paleoplate positions, and approaches for improving the accuracy of paleoclimate, paleoelevation, and paleodepth determinations.
-
-
图 1 PBDB数据库主要结构(改自Peters and McClennen, 2016)
Figure 1.
图 3 石炭纪宾夕法尼亚时期蒙古地块(AMB)与华北地块(NCB)古地理重建模式(改自Ren et al., 2021)
Figure 3.
图 4 美洲中部植物叶相与气候分布(改自Chaloner and Creber, 1990; Chaney, 1947; Scotese, 2021)
Figure 4.
图 5 利用最近亲缘现生物种共存区间推测古海拔,蓝色矩形条表示物种的生存海拔(高程)范围(改自周浙昆等, 2007)
Figure 5.
图 6 利用PBDB数据修正76 Ma北美板块海岸线(改自Cao et al., 2017)
Figure 6.
表 1 渤海海域新近纪常见水生植物与古水深指示关系(改自潘文静等, 2019)
Table 1. Relationship between common aquatic plants and paleo-bathymetric indicators in the Bohai Sea during Neogene (modified from Pan et al., 2019)
植物类型 挺水植物带 浮水植物带 沉水植物带 无水底植物带 浮游植物带 轮藻植物带 水深/m <1.5 1.5~3 3~5,局部到7 >7 4~6 2.5 属种类型 Sparganium stoloniferum
RanunculusAzolla Sporotrapoidites Potamogeton Pediastrum 轮藻 -
[1] Bailey I W, Sinnott E W, 1916. The Climatic Distribution of Certain Types of Angiosperm Leaves[J]. American Journal of Botany, 3(1): 24-39. doi: 10.1002/j.1537-2197.1916.tb05397.x
[2] Beerling D J, Royer D L, 2002. Reading a CO2 signal from fossil stomata[J]. The New Phytologist, 153(3): 387-397. doi: 10.1046/j.0028-646X.2001.00335.x
[3] Boucot A J, 陈旭, Scotese C R, 等, 2009. 显生宙全球古气候重建[M]. 北京: 科学出版社.
Boucot A J, Chen X, Scotese C R, et al., 2009. Phanerozoic global paleoclimatic reconstruction[M]. Beijing: Science Press.
[4] Boyd A, 1994. Some limitations in using leaf physiognomic data as a precise method for determining paleoclimates with an example from the Late Cretaceous Pautût Flora of West Greenland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 261-278.
[5] Cao W C, Zahirovic S, Flament N, et al. , 2017. Improving global paleogeography since the late Paleozoic using paleobiology[J]. Biogeosciences, 14(23): 5425-5439. doi: 10.5194/bg-14-5425-2017
[6] Chaloner W G, Creber G T, 1990. Do fossil plants give a climatic signal?[J]. Journal of the Geological Society, 147(2): 343-350. doi: 10.1144/gsjgs.147.2.0343
[7] Chaney R W, 1947. Tertiary centers and migration routes[J]. Ecological Monographs, 17(2): 139-148. doi: 10.2307/1943260
[8] 邓怡颖, 樊隽轩, 王玥, 等, 2020. 古生物学数据库现状与数据驱动下的科学研究[J]. 高校地质学报, 26(4): 361-383.
Deng Y Y, Fan J X, Wang Y, et al., 2020. Current status of paleontological databases and data-driven research in paleontology[J]. Geological Journal of China Universities, 26(4): 361-383.
[9] Eizenhöfer P R, Zhao G C, Sun M, et al. , 2015. Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China Craton and Mongolian arcs and tectonic implications[J]. Geological Society of America Bulletin, 127(9-10): 1422-1436. doi: 10.1130/B31175.1
[10] 樊隽轩, 侯旭东, 陈中阳, 等, 2013. 基于 GBDB 数据库的地层学研究与应用[J]. 地层学杂志, 37(4): 400-409.
Fan J X, Hou X D, Chen Z Y, et al., 2013. GeoBiodiversity database and its application in stratigraphic research[J]. Journal of Stratigraphy, 37(4): 400-409.
[11] 樊隽轩, 张华, 侯旭东, 等, 2011. 古生物学和地层学研究的定量化趋势--GBDB数字化科研平台的建设及其意义[J]. 古生物学报, 50(2): 141-153.
Fan J X, Zhang H, Hou X D, et al., 2011. Quantitative research trends in palaeobiology and stratigraphy—construction of the GeoBiodiversity database(GBDB) using escience technology[J]. Acta Palaeontologica Sinica, 50(2): 141-153.
[12] Forest C E, Wolfe J A, Molnar P, et al. , 1999. Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate[J]. Geological Society of America Bulletin, 111(4): 497. doi: 10.1130/0016-7606(1999)111<0497:PIAPAB>2.3.CO;2
[13] Forest C E, 2007. Paleoaltimetry: A Review of Thermodynamic Methods[J]. Reviews in Mineralogy and Geochemistry, 66(1): 173-193. doi: 10.2138/rmg.2007.66.7
[14] Greenwood D R, 1992. Taphonomic constraints on foliar physiognomic interpretations of Late Cretaceous and Tertiary palaeoclimates[J]. Review of Palaeobotany and Palynology, 71(1-4): 149-190. doi: 10.1016/0034-6667(92)90161-9
[15] Gregory K M, Chase C G, 1992. Tectonic significance of paleobotanically estimated climate and altitude of the late Eocene erosion surface, Colorado[J]. Geology, 20(7): 581-585. doi: 10.1130/0091-7613(1992)020<0581:TSOPEC>2.3.CO;2
[16] 郭安林, 张国伟, 姚安平, 2004. 地质数据库建立中的系统分析[J]. 西北大学学报(自然科学版), 34(2): 203-206 doi: 10.3321/j.issn:1000-274X.2004.02.020
Guo A L, Zhang G W, Yao A P, 2004. System analysis in building geological database[J]. Journal of Northwest University (Natural Science Edition), 34(2): 203-206. doi: 10.3321/j.issn:1000-274X.2004.02.020
[17] Hallam A, Wignall P B, 1999. Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 48(4): 217-250. doi: 10.1016/S0012-8252(99)00055-0
[18] 侯旭东, 樊隽轩, 2012. GBDB数据库的发展与数据简况[J]. 地层学杂志, 36(3): 627-629
Hou X D, Fan J X, 2012. Current development of the Geobiodiversity Database (GBDB) and its data statistics[J]. Journal of Stratigraphy, 36(3): 627-629.
[19] 黄永江, 苏涛, 星耀武, 等, 2010. 两种古海拔重建方法及山旺中中新世古海拔的定量重建[J]. 古生物学报, 49(4): 532-538
Huang Y J, Su T, Xing Y W, et al. , 2010. Two methods of palaeoaltitude reconstruction and quantitative palaeoaltitude reconstruction of the middle Miocene Shanwang[J]. Acta Palaeontologica Sinica, 49(4): 532-538.
[20] Kocsis Á T, Scotese C R, 2021. Mapping paleocoastlines and continental flooding during the Phanerozoic[J]. Earth-Science Reviews, 213: 103463. doi: 10.1016/j.earscirev.2020.103463
[21] Kouwenberg L L R, Kürschner W M, McElwain J C, 2007. Stomatal Frequency Change Over Altitudinal Gradients: Prospects for Paleoaltimetry[J]. Reviews in Mineralogy and Geochemistry, 66(1): 215-241. doi: 10.2138/rmg.2007.66.9
[22] Macarthur R H, Wilson E O, 1963. An Equilibrium Theory of Insular Zoogeography[J]. Evolution, 17(4): 373-387. doi: 10.1111/j.1558-5646.1963.tb03295.x
[23] Matthews K J, Maloney K T, Zahirovic S, et al, 2016. Global plate boundary evolution and kinematics since the late Paleozoic[J]. Global and Planetary Change, 146: 226-250. doi: 10.1016/j.gloplacha.2016.10.002
[24] McElwain J C, 2004. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure[J]. Geology, 32(12): 1017-1020. doi: 10.1130/G20915.1
[25] 潘文静, 刘士磊, 田德瑞, 等, 2019. 渤海海域新近纪湖盆萎缩期古水深恢复——以渤东低凸起南端为例[J]. 海洋地质前沿, 35(4): 18-25
Pan W J, Liu S L, Tian D R, et al. , 2019. Reconstruction of palaeo-water depth of Neocene shrinking lake: an example from the south of Bodong low uplift, Bohai sea[J]. Marine Geology Frontiers, 35(4): 18-25.
[26] 潘照晖, 朱敏, 2020. 国内外古脊椎动物数据库综述[J]. 高校地质学报, 26(4): 424-443
Pan Z H, Zhu M, 2020. Review of database in vertebrate Paleontology[J]. Geological Journal of China Universities, 26(4): 424-443.
[27] Peters, Shanan E.McClennen, Michael.The Paleobiology Database application programming interface[J].PALEOBIOLOGY,2016,(1):1-7.
[28] Phillips J. 1860. Life on the Earth: Its Origin and Succession [M]. London: Macmillan and Company.
[29] Ren Q, Zhang S, Suhbaatar T, et al. , 2021. Did the Boreal Realm extend into the equatorial region? New paleomagnetic evidence from the Tuva-Mongol and Amuria blocks[J]. Earth and Planetary Science Letters, 576: 117246. doi: 10.1016/j.jpgl.2021.117246
[30] Scotese C R, Song H J, Mills B J W, et al. , 2021. Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years[J]. Earth-Science Reviews, 215, 103503.
[31] Sepkoski J J. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria [J]. Paleobiology, 5(3): 222-251
[32] Sepkoski J J. 1982. A compendium of fossil marine families [J]. Milwaukee Public Museum Contributions in Biology and Geology, 51: 1-125
[33] Sepkoski J J. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions [J]. Paleobiology, 10(2): 246-267
[34] Sepkoski J J. 1992. A compendium of fossil marine animal families, 2nd edition [J]. Milwaukee Public Museum Contributions in Biology and Geology, 83: 1-156.
[35] Spicer R A, Harris N B W, Widdowson M, et al. , 2003. Constant elevation of southern Tibet over the past 15million years [J]. Nature, 421: 622-624. doi: 10.1038/nature01356
[36] 苏新, 丁旋, 姜在兴, 等, 2012. 用微体古生物定量水深法对东营凹陷沙四上亚段沉积早期湖泊水深再造[J]. 学前缘, 19(1): 188-199
Su X, Ding X, Jiang Z X, et al. , 2012. The micropaleontological quantitative bathymetry method was used to reconstruct the lake bathymetry in the early sedimentary stage of the upper fourth member of the Shahejie Formation in Dongying Depression[J]. Earth Science Frontiers, 19(1): 188-199.
[37] 孙克勤, 1997. 全球石炭纪-二叠纪植物群的演化和分布特征[J]. 地学前缘, 4(3-4): 129-138
Sun K Q, 1997. Characteristics of the evolution and distribution of the global Carboniferous and Permian floras[J]. Earth Science Frontiers (China University of Geosciences (Beijing); Peking University), 4(3-4): 129-138.
[38] 孙启高, 2008. 如何利用化石植物定量研究古海拔?[J]. 地质论评, 54(2): 145-154 doi: 10.3321/j.issn:0371-5736.2008.02.001
Sun Q G, 2008. How to determine quantitative estimates of palaeoelevation from fossil plants?[J]. Geological Review, 54(2): 145-154. doi: 10.3321/j.issn:0371-5736.2008.02.001
[39] van der Zwaan G J, Jorissen F J, de Stigter H C, 1990. The depth dependency of planktonic/benthic foraminiferal ratios; constraints and applications[J]. Marine Geology, 95(1): 1-16. doi: 10.1016/0025-3227(90)90016-D
[40] 王成文, 赵国伟, 李宁, 等, 2014. 中亚地区晚古生代腕足动物古生物地理与构造古地理的协同演化[J]. 中国科学: 地球科学, 44(2): 213-226.
Wang C W, Zhao G W, Li N, et al., 2014. Coevolution of brachiopod paleobiogeography and tectonopaleogeography during the late Paleozoic in central Asia[J]. Science China: Earth Sciences, 56: 2094-2106.
[41] Wang C W, Li N, Zong P, et al. , 2014. Coevolution of brachiopod Boreal Realm and Pangea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 412: 160-168.
[42] 王军, 沈光隆, 张泓, 等, 2001. 论我国二叠纪华夏植物群岛屿生物地理平衡理论的应用[J]. 古生物学报, 40(4): 443-449 doi: 10.3969/j.issn.0001-6616.2001.04.004
Wang J, Shen G L, Zhang H, et al. , 2001. On the application of the equilibrium theory of island biogeography to the Permian Cathaysian flora of China[J]. Acta Palaeontologica Sinica, 40(4): 443-449. doi: 10.3969/j.issn.0001-6616.2001.04.004
[43] 王乃文, 1984. 青藏高原古生物地理与板块构造的探讨[C]//中国地质科学院地质研究所文集(9).
Wang N W, 1984. On the palaeobiogeography and plate tectonics of Qinghai−Tibet plateau[C]//Proceedings of the Institute of Geology, Chinese Academy of Geological Sciences(9).
[44] Wang T, Tong Y, Zhang L, et al. , 2017. Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance[J]. Journal of Asian Earth Sciences, 145: 368-392. doi: 10.1016/j.jseaes.2017.06.029
[45] 王永标, 杨浩, 2003. 东昆仑-阿尼玛卿-巴颜喀拉地区早二叠世的生物古地理特征[J]. 中国科学: 地球科学, 33(8): 775-780
Wang Y B, Yang H, 2003. Biopaleogeographic characteristics of the Early Permian in the East Kunlun-Anyemaqen-Bayan Har area[J]. Science China: Earth Sciences, 33(8): 775-780.
[46] Wei X X, Zhang X H, Shi G R, et al. , 2016. First report of a phytogeographically mixed (transitional) Middle–Late Permian fossil wood assemblage from the Hami area, northwest China, and implications for Permian phytogeographical, paleogeographical and paleoclimatic evolution in central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 125-140.
[47] Wichura H, Jacobs L L, Lin A, et al. , 2015. A 17-My-old whale constrains onset of uplift and climate change in east Africa[J]. Proceedings of the National Academy of Sciences, 112(13): 3910-3915. doi: 10.1073/pnas.1421502112
[48] Wolfe J A, 1978. A Paleobotanical Interpretation of Tertiary Climates in the Northern Hemisphere: Data from fossil plants make it possible to reconstruct Tertiary climatic changes, which may be correlated with changes in the inclination of the earth's rotational axis[J]. American Scientist, 66(6): 694-703.
[49] Wolfe J A, 1985. Distribution of major vegetational types during the Tertiary[J]. The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present, 32: 357-375.
[50] Wolfe J A, 1995. Paleoclimatic estimates from tertiary leaf assemblages[J]. Annual Review of Earth and Planetary Sciences, 23: 119-142. doi: 10.1146/annurev.ea.23.050195.001003
[51] Wolfe J A, 1993. A method of obtaining climatic parameters from leaf assemblages[M]. Washington: U. S. Geological Survey Bulletin 2040, 1.
[52] Woodward F I, Williams B G, 1987. Climate and Plant Distribution at Global and Local Scales[J]. Vegetatio, 69(1-3): 189-197. doi: 10.1007/BF00038700
[53] 张蕾, 钟瀚霆, 陈安清, 等, 2020. 大数据驱动下的数字古地理重建: 现状与展望[J]. 高校地质学报, 26(1): 073-085.
Zhang L, Zhong H T, Chen A Q, et al., 2020. Paleogeographic reconstruction driven by big data: challenges and prospects[J]. Geological Journal of China Universities, 26(1): 073-085.
[54] Zhang S H, Li Z X, Evans D A D, et al. , 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 353-354: 145-155. doi: 10.1016/j.jpgl.2012.07.034
[55] Zhao G C, Cawood P A, Wilde S A, et al. , 2002. Review of global 2.1 – 1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 59(1-4): 125-162. doi: 10.1016/S0012-8252(02)00073-9
[56] 周浙昆, 杨青松, 夏珂, 2007. 栎属高山栎组植物化石推测青藏高原的隆起[J]. 科学通报, 52(3): 249-257 doi: 10.3321/j.issn:0023-074X.2007.03.001
Zhou Z K, Yang Q S, Xia K, 2007. Plant fossils of Quercus group inferred the uplift of Qinghai-Tibet Plateau [J]. Chinese Science Bulletin, 52(3): 249-257. doi: 10.3321/j.issn:0023-074X.2007.03.001
-