Development of fluvial terraces in Chengdu Plain: Implications for the paleoclimate and Neotectonic Movement
-
摘要:
为了研究第四纪以来成都平原古气候变化规律和新构造运动特征,对成都平原岷江水系河流阶地序列,年代格架,不同地质时期的孢粉组合特征和T4剖面上网纹红土的地球化学特征等进行了深入研究。通过收集大量存量资料,辅以少量野外查证工作,结合地质、地貌和年代学资料,厘定了成都平原岷江水系5级河流阶地,T5至T1拔河分别为98~127 m、59~79 m、36~52 m、4~10 m、2~5 m,形成时代分别为925±92 ka、722±77 ka、462±46 ka、30.13±2.86 ka、9.0 ka,其中T5、T4、T3、T2为基座阶地,发育受构造运动和气候变化共同驱动,可作为第四纪以来成都平原东缘龙泉山背斜南段隆升的地貌标志,T1为堆积阶地,发育主要受气候变化驱动;孢粉组合特征反映第四纪以来成都平原以森林草原植被为主,气候整体具由偏暖偏湿向温干变化的趋势;阶地资料揭示第四纪以来龙泉山背斜南段经历了四次间歇性隆升,隆升高度达127 m,早更新世中期龙泉山背斜南段隆升速率为0.089~0.335 mm/a,早更新世晚期隆升速率急剧下降至0.027~0.165 mm/a,然后呈现出逐渐升高的趋势,到晚更新世—全新世隆升速率上升到0.133~0.322 mm/a;龙泉山背斜南北段存在差异隆升,北段的隆升速率和隆升幅度明显大于南段,在现代地貌上表现为龙泉山北段以低山为主,南段向低山丘陵过渡。
Abstract:In order to study the paleoclimate and neotectonic movement characteristics of the Chengdu Plain since the Quaternary, a detailed study of the river terrace sequence of the Minjiang River system examined the chronological framework, pollen assemblage characteristics in different geological periods, and geochemical characteristics of vermicular red clay from T4 in Chengdu Plain. Based on a large amount of data, along with field verification, and combined with geological, geomorphological, and chronological data, we identified 5 fluvial terraces in the transverse drainage of the Minjiang River system in the Chengdu Plain. The terrace thicknesses from T5 to T1 are 98~127 m, 59~79 m, 36~52 m, 4~10 m, and 2~5 m, respectively. The results show that the terraces T5~T2 formed at 925±92 ka, 722±77 ka, 462±46 ka, 30.13±2.86 ka and 9.0 ka respectively, which are base terrace, whose development is driven by tectonic movement and climate change, and can be used as the geomorphic symbol of the uplift of the south section of Longquan anticline on the eastern edge of Chengdu Plain since Quaternary. T1 is the accumulation terrace, whose development is mainly driven by climate change. Pollen assemblages show that the Chengdu Plain has been dominated by forest and grassland vegetation since the Quaternary, and the climate has a trend of changing from warm and wet to warm and dry. Terrace data reveal that the south section of Longquan anticline has experienced four intermittent uplifts since the Quaternary, with an uplift height of 127 meters. The uplift of the south section of Longquan anticline reached its peak in the middle of the early Pleistocene, with an uplift rate of 0.089~0.335 mm/a. By the late Early Pleistocene, the uplift rate decreased sharply to 0.027~0.165 mm/a, and then showed a gradually increasing trend, to 0.133~0.322 mm/a in the late Pleistocene Holocene. There is differential uplift between the south and north sections of Longquan anticline. The uplift rate and amplitude of the north section are significantly greater than those of the south section. In modern geomorphology, the north section of Longquan Mountain is dominated by low mountains, and the south section transits to low mountains and hills.
-
Key words:
- Chengdu Plain /
- Minjiang River system /
- fluvial terraces /
- Paleoclimate /
- Neotectonic movement
-
-
图 2 岷江水系第四纪河流阶地序列、沉积物及测年结果示意图(测年数据据梁斌等,2014)
Figure 2.
图 3 成都龙泉山褶断带结构模式图(据Xu et al.,2009修改)
Figure 3.
表 1 第四纪以来不同时期成都平原孢粉组合百分含量统计
Table 1. Percentage statistics of pollen assemblages in Chengdu Plain in different periods since Quaternary
时代 早—中更新世 中更新世 晚更新世 晚更新世—全新世 采样位置 双流
应天寺仁寿
视高蒲江
五里碑眉山
城关双流
黄龙溪眉山
东馆双流
机场青白江
姚渡双流应天寺 龙泉驿
柏合金堂
三星木本植物 56.1 59.2 59.8 57.1 59.3 60.6 57.1 55.9 55.1 55.2 51.6 Pinus 15.2 18.0 14.8 19.4 20.4 18.4 17.1 17.2 17.4 18.9 16.6 Picea 1.8 2.3 2.1 1.8 2.9 1.7 2.2 2.4 2.1 2.3 2.1 Abies / / 0.6 0.7 0.6 0.4 0.5 0.2 / 0.6 / Tsuga 0.9 0.8 1.1 1.0 0.8 1.4 0.9 1.0 1.1 1.1 1.0 Quercus 20.2 19.6 17.9 20.7 19.5 18.5 20.5 17.2 17.2 16.7 15.6 Betula 7.4 8.4 8.9 5.4 6.4 8.2 7.4 8.4 7.4 6.0 4.8 Carpinus 0.5 / 0.6 0.5 0.4 0.8 0.6 0.7 0.4 0.4 1.0 Alnus 0.4 0.8 1.0 0.6 1.1 1.1 1.0 0.6 0.9 1.1 1.0 Castanea 8.5 7.7 10.7 3.8 4.2 7.5 4.1 5.8 5.6 5.7 8.0 Ulmus 0.5 0.8 0.4 0.8 1.3 1.6 1.2 1.1 1.7 0.9 1.1 Juglans 0.7 0.4 1.0 1.4 1.1 1.0 1.1 0.8 0.9 1.0 0.4 Liquidambar / 0.4 0.7 1.0 0.6 / 0.5 0.5 0.4 0.5 / 灌木和草本植物 32.0 28.0 29.1 27.4 28.6 27.6 28.8 30.2 29.8 28.4 20.9 Corylus 3.7 3.5 2.0 4.4 3.9 2.8 4.4 3.1 3.1 3.3 2.3 Ericaceae 0.7 1.2 0.7 / 0.5 1.1 1.0 0.7 1.0 1.2 0.5 Ephedra 0.3 / 0.4 0.4 0.4 / 0.4 0.4 0.7 0.5 0.3 Artemisia 11.2 6.9 10.1 8.0 8.1 7.6 9.9 9.5 9.5 9.2 5.9 Chenopodiaceae 3.2 3.1 1.9 1.6 3.1 3.1 2.3 3.5 4.7 2.8 2.2 Cyperaceae 8.2 8.8 8.6 8.8 7.9 8.0 7.4 7.6 7.0 7.2 7.6 Polygonum 0.8 0.9 1.2 1.0 0.7 0.5 1.0 1.1 0.5 0.8 0.5 Gramineae 0.8 1.0 1.2 1.5 1.3 2.2 0.9 1.4 1.2 1.2 0.5 Compositae 0.3 / 0.5 0.3 0.7 0.3 / 0.4 / / 0.6 Solanaceae 1.0 0.7 0.7 0.6 0.4 0.7 0.6 0.9 0.6 0.7 / Thalictrum 0.5 0.7 0.5 / 0.4 / / 0.2 / / / Typha 0.4 0.4 0.5 / 0.5 0.3 0.4 0.5 / 0.6 / Myriophyllum 0.9 0.8 0.8 0.8 0.7 1.0 0.5 0.9 1.5 0.9 0.5 蕨类孢子和藻类 7.7 8.8 9.1 10.1 7.3 8.3 10.2 10.1 9.8 11.4 22.9 Polypodium 2.8 3.3 4.3 3.2 4.2 4.1 5.2 4.3 5.2 5.0 4.1 Trilete-spores 1.2 1.6 0.6 1.8 0.9 1.6 0.9 1.0 1.6 1.3 4.2 Monolete-spores 2.4 3.1 1.4 2.5 / 1.2 / 1.7 0.9 2.9 6.9 Hicriopteris / / 0.5 / 0.7 / 1.1 0.9 0.9 0.6 3.9 Pteris 0.4 / 0.3 0.5 / 0.4 0.7 0.3 0.4 / / Concentricystes 0.3 0.4 0.6 0.6 0.4 / 1.3 0.5 0.4 0.8 1.8 Pediastrum 0.3 / 0.3 0.4 0.4 / 0.5 0.3 / / / Zygnema / / / / 0.3 / / 0.4 / / / Sphagnum 0.3 0.4 1.1 1.1 0.4 1.0 0.5 0.7 0.4 0.8 2.0 注:不同时期孢粉数据来源于中华人民共和国区域地质调查报告1: 250000 成都幅;“/”代表未鉴定出该类植物的孢粉。表 2 T4剖面网纹红土主量(%)和微量元素测试结果(×10−6)
Table 2. Major (%) and trace element concentrations (×10−6) of the vermicular red clay from T4
位置 仁寿视高 蒲江城关 双流应天寺 UCC 样号 CP11-5hf1 5hf2 5bf3 PM02-3hf1 3hf2 3hf3 PM31-3hf2 4hf 5hf1 5hf3 5hf4 SiO2 72.15 69.12 68.21 63.32 68.05 75.6 71.23 71.76 72.15 68.91 68.44 66 Fe2O3 6.84 9.45 10.24 8.99 7.19 4.60 6.32 6.30 6.21 7.07 7.64 5 FeO 0.10 0.17 0.03 0.13 0.03 0.13 0.05 0.07 0.08 0.12 0.10 / Al2O3 13.19 13.07 13.28 17.42 15.42 12.21 14.02 13.67 13.37 14.94 14.86 15.2 K2O 1.09 1.14 1.17 1.50 1.50 1.35 1.08 1.10 1.18 1.64 1.45 3.4 Na2O 0.20 0.22 0.09 0.20 0.14 0.18 0.21 0.21 0.21 0.23 0.23 3.9 CaO 0.22 0.27 0.21 0.25 0.09 0.13 0.38 0.38 0.35 0.32 0.36 4.2 MgO 0.49 0.52 0.45 0.71 0.65 0.53 0.58 0.57 0.53 0.62 0.62 2.2 TiO2 1.01 1.03 1.05 1.12 1.14 1.15 1.11 1.12 1.08 1.07 1.07 0.65 MnO 0.01 0.02 0.01 0.02 0.04 0.02 0.01 0.01 0.02 0.02 0.02 0.08 P2O5 0.02 0.03 0.04 0.02 0.03 0.01 0.03 0.03 0.03 0.04 0.04 0.15 LOI 4.55 4.81 5.06 6.16 5.54 3.94 4.82 4.62 4.63 4.87 5.01 Zr 452.1 388.2 433.6 338.6 417.2 239.3 394.7 410.7 375.3 333.3 351.8 190 Hf 12.4 11.1 12.4 10.0 12.3 6.7 11.8 11.7 11.1 9.4 10.6 5.8 Ba 217.6 264.8 261.5 299.1 293.0 353.2 192.9 217.8 225.3 273.2 193.2 550 Cu 21.0 23.3 23.5 38.0 35.9 28.2 26.4 25.2 34.0 26.5 29.5 25 V 111.2 116.3 130.2 143.6 100.3 132.8 112.5 107.2 105.5 120.9 126.3 60 Zn 41.1 50.1 50.4 107.4 66.6 82.5 88.9 78.6 53.1 54.4 57.8 71 Sc 11.8 11.0 7.2 14.0 12.1 8.3 11.2 13.9 13.8 13.5 9.5 11 Cr 101.3 101.0 103.8 116.4 78.9 75.3 99.2 97.9 94.6 101.5 112.3 35 Co 5.9 7.5 7.4 18.4 11.0 22.4 25.0 22.6 11.9 7.8 11.4 10 Ni 19.7 21.1 20.5 41.2 29.7 35.9 40.5 38.2 31.3 28.3 31.4 20 Rb 58.8 53.8 64.5 59.9 80.4 86.4 49.3 55.8 74.0 65.5 37.7 112 Pb 27.6 30.8 35.0 28.5 20.9 34.5 23.2 20.9 22.0 26.4 26.1 20 Th 15.9 14.7 19.8 15.6 15.1 19.7 12.0 14.8 16.7 16.0 10.1 10.7 U 4.0 4.4 5.4 4.1 3.6 5.1 3.9 4.7 5.4 5.0 5.0 28 注:测试数据来源于中华人民共和国区域地质调查报告1: 250000 成都幅,上陆壳(UCC)数据引自文献(Taylor and McLennan,1985)。表 3 成都平原河流阶地各时段隆升幅度和速率
Table 3. The uplift amplitude and rate of fluvial terraces in each period in the Chengdu Plain
阶地编号 河流下切年代(ka) 相对隆升时间(ka) 阶地拔河(m) 相对隆升高度(m) 隆升速率(mm/a) T5 925 203 98~127 19~68 0.089~0.335 T4 722 260 59~79 7~43 0.027~0.165 T3 462 431.87 36~52 26~48 0.060~0.111 T2 30.13 30.13 4~10 4~10 0.133~0.322 注:相对隆升时间——各级阶地废弃的时间差;阶地拔河——现今阶地面到河床面的高差;相对隆升高度——各级阶地间的高差;隆升速率——各级阶地间的高差/相对隆升时间。 -
[1] Bridgland D and Westaway R, 2008. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon[J]. Geomorphology, 98(3-4): 285-315. doi: 10.1016/j.geomorph.2006.12.032
[2] Bridgland D, Maddy D, Bates M, 2004. River terrace sequences: Templates for Quaternary geochronology and marine–terrestrial correlation[J]. Journal of Quaternary Science, 19(2): 203-218. doi: 10.1002/jqs.819
[3] Bull W B, 1990. Stream-terrace genesis: Implications for soil development[J]. Geomorphology, 3(3-4): 351-367. doi: 10.1016/0169-555X(90)90011-E
[4] Burbank D W, Leland J, Filding E, et al. , 1996. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas[J]. Nature, 379(6565): 505-510. doi: 10.1038/379505a0
[5] 常宏, 安芷生, 强小科, 等, 2005. 河流阶地的形成及其对构造与气候的意义[J]. 海洋地质动态, 21(2): 8-11+37-38 doi: 10.3969/j.issn.1009-2722.2005.02.003
Chang H, An Z S, Qiang X K, et al. , 2005. Formation of fluvial terrace and its tectonic and climate significance [J]. Marine Geology Letters, 21(2): 8-11+37-38. doi: 10.3969/j.issn.1009-2722.2005.02.003
[6] 陈之端, 1994. 桦木科植物的系统发育和地理分布(续)[J]. 植物分类学报, 32(2): 101-153
Chen Z D, 1994. Phylogeny and phytogeography of the Betulaceae (Cont. ) [J]. Journal of Systematics and Evolution, 32(2): 101-153.
[7] 邓宾, 刘树根, 李智武, 等, 2008. 青藏高原东缘及四川盆地晚中生代以来隆升作用对比研究[J]. 成都理工大学学报(自然科学版), 35(4): 477-486 doi: 10.3969/j.issn.1671-9727.2008.04.018
Deng B, Liu S G, Li Z W, et al. , 2008. A comparative study of the late Mesozoic uplifting in the eastern margin of Qinghai-Tibet Plateau and Sichuan Basin, China [J]. Journal of Chengdu University of Technology (Science and Technology Edition), 35(4): 477-486. doi: 10.3969/j.issn.1671-9727.2008.04.018
[8] 董铭, 苏怀, 史正涛, 等, 2018. 金沙江金江街段河流阶地年代及对河谷水系演化历史的启示[J]. 地理学报, 73(9): 1728-1736 doi: 10.11821/dlxb201809009
Dong M, Su H, Shi Z T, et al. , 2018. The age of river terraces in the Jinjiangjie reach of the Jinsha river and its implications for valley and drainage evolution [J]. Acta Geographica Sinica, 73(9): 1728-1736. doi: 10.11821/dlxb201809009
[9] 冯兴雷, 付修根, 谭富文, 等, 2014. 羌塘盆地孔孔茶卡地区石炭系擦蒙组烃源岩沉积环境分析[J]. 现代地质, 28(5): 953-961 doi: 10.3969/j.issn.1000-8527.2014.05.010
Feng X L, Fu X G, Tan F W, et al. , 2014. Sedimentary environment characteristics of Upper Carboniferous Cameng Formation in Kongkong Chaka area of northern Qiangtang basin, Tibet [J]. Geoscience, 28(5): 953-961. doi: 10.3969/j.issn.1000-8527.2014.05.010
[10] 郭子奇, 李胜伟, 王东辉, 等, 2019. 浅析四川成都龙泉山城市森林公园主要环境地质问题[J]. 沉积与特提斯地质, 39(4): 90-99 doi: 10.3969/j.issn.1009-3850.2019.04.010
Guo Z Q, Li S W, Wang D H, et al. , 2019. Environmental geology of the Longquanshan urban forest park, Chengdu, Sichuan [J]. Sedimentary Geology and Tethyan Geology, 39(4): 90-99. doi: 10.3969/j.issn.1009-3850.2019.04.010
[11] He Z X, Zhang X J, Qiao Y, et al. , 2015. Formation of the Yalong Downstream Terraces in the SE Tibetan Plateau and its implication for the uplift of the plateau[J]. Acta Geologica Sinica (English Edition), 89(2): 542-560. doi: 10.1111/1755-6724.12446
[12] Hu Z B, Pan B T, Wang J P, et al. , 2012. Fluvial terrace formation in the eastern Fenwei Basin, China, during the past 1.2 Ma as a combined archive of tectonics and climate change[J]. Journal of Asian Earth Sciences, 60, 235-245.
[13] 胡春生. 2014, 河流阶地研究进展综述[J]. 地球环境学报, 5(5):353-362
Hu C S. 2014, Progress in research on river terraces[J]. Journal of Earth Environment, 5(5):353-362.
[14] 胡俊杰, 马寅生, 王宗秀, 等, 2017. 地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候[J]. 古地理学报, 19(3): 480-490 doi: 10.7605/gdlxb.2017.03.037
Hu J J, Ma Y S, Wang Z X, et al. , 2017. Palaeoenvironment and palaeoclimate of the Middle to Late Jurassic revealed by geochemical records in northern margin of Qaidam basin [J]. Journal of Palaeogeography, 19(3): 480-490. doi: 10.7605/gdlxb.2017.03.037
[15] 胡小飞, 潘保田, 高红山, 等, 2013. 祁连山东段全新世河流阶地发育及其与气候变化的关系研究[J]. 第四纪研究, 33(4): 723-736 doi: 10.3969/j.issn.1001-7410.2013.04.10
Hu X F, Pan B T, Gao H S, et al. , 2013. Development of Holocene fluvial terraces in the eastern Qilianshan mountain and its relationship with climatic changes [J]. Quaternary Sciences, 33(4): 723-736. doi: 10.3969/j.issn.1001-7410.2013.04.10
[16] Jia L Y, Zhang X J, He Z X, et al. , 2015. Late quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift: A case study in the Langshan area, Inner Mongolia, Northern China[J]. Geomorphology, 234(1): 109-121.
[17] 雷传扬, 刘兆鑫, 王波, 等, 2021. “互联网+”背景下地质大数据共享服务研究[J]. 中国国土资源经济, 34(11): 22-27+89 doi: 10.19676/j.cnki.1672-6995.000626
Lei C Y, Liu Z X, Wang B, et al. , 2021. Research on geological big data sharing service under the background of "internet plus" [J]. Natural Resource Economics of China, 34(11): 22-27+89. doi: 10.19676/j.cnki.1672-6995.000626
[18] 雷传扬, 刘兆鑫, 文辉, 等, 2022. 基于多源数据和先验知识约束的复杂地质体三维建模研究[J]. 地质论评, 68(4): 1393-1411
Lei C Y, Liu Z X, Wen H, et al. , 2022. Research on 3D geological modeling of complex geological body based on multi-source data and prior geological knowledge [J]. Geological Review, 68(4): 1393-1411.
[19] 雷传扬, 王静, 谢海洋, 等, 2020. 地质大数据建库存量资料收集与整理方法研究[J]. 国土资源科技管理, 37(4): 70-80
Lei C Y, Wang J, Xie H Y, et al. , 2020. Research on the method of the collection and sorting out the stocking data of the construction of geological big database [J]. Scientific and Technological Management of Land and Resources, 37(4): 70-80.
[20] 李康, 徐锡伟, 谭锡斌, 2013. 龙泉山背斜的地壳缩短与隆升——来自河流阶地变形的证据[J]. 地震地质, 35(1): 22-36 doi: 10.3969/j.issn.0253-4967.2013.01.002
Li K, Xu X W, Tan X B, 2013. Using deformation terraces to confine the shortening and uplift of the Longquan anticline [J]. Seismology and Geology, 35(1): 22-36. doi: 10.3969/j.issn.0253-4967.2013.01.002
[21] 梁斌, 王全伟, 朱兵, 等, 2013. 川西地区成都粘土的光释光年代学[J]. 第四纪研究, 33(4): 823-828 doi: 10.3969/j.issn.1001-7410.2013.04.18
Liang B, Wang Q W, Zhu B, et al. , 2013. Optically stimulated luminescence dating of the Chengdu clay in the west Sichuan basin [J]. Quaternary Sciences, 33(4): 823-828. doi: 10.3969/j.issn.1001-7410.2013.04.18
[22] 梁斌, 朱兵, 王全伟, 等, 2014. 成都平原第四纪地质与环境[M]. 北京: 科学出版社.
Liang B, Zhu B, Wang Q W, et al., 2014. Quaternary geology and environment of Chengdu plain[M]. Beijing: Science Press.
[23] 刘洪, 黄瀚霄, 欧阳渊, 等, 2020. 基于地质建造的土壤地质调查及应用前景分析——以大凉山区西昌市为例[J]. 沉积与特提斯地质, 40(1): 91-105
Liu H, Huang H Z, Ouyang Y, et al. , 2020. Soil's geologic investigation in Daliangshan, Xichang, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 91-105.
[24] 刘树根, 罗志立, 赵锡奎, 等, 2003. 中国西部盆山系统的耦合关系及其动力学模式——以龙门山造山带—川西前陆盆地系统为例[J]. 地质学报, 77(2): 177-186 doi: 10.3321/j.issn:0001-5717.2003.02.005
Liu S G, Luo Z L, Zhao X K, et al. , 2003. Coupling relationships of sedimentary basin-orogenic belt systems and their dynamic models in west China--A case study of the Longmenshan orogenic belt-west Sichuan foreland basin system [J]. Acta Geologica Sinica, 77(2): 177-186. doi: 10.3321/j.issn:0001-5717.2003.02.005
[25] 刘兴诗, 1983. 四川盆地的第四系[M]. 成都: 四川科技出版社, 1-20
Liu X S, 1983. Quaternary system in Sichuan basin [M]. Chengdu: Sichuan Science and Technology Press, 1-20.
[26] 柳存喜, 黎莎, 刘冠男, 2021.2020年龙泉山断裂带ms5.1地震成因综合分析[J]. 地震工程学报, 43(2): 306-315+330 doi: 10.3969/j.issn.1000-0844.2021.02.306
Liu C X, Li S, Liu G N, 2021. Comprehensive analysis of seismogenesis of the 2020 ms5.1 earthquake on the Longquanshan fault zone, SW China [J]. China Earthquake Engineering Journal, 43(2): 306-315+330. doi: 10.3969/j.issn.1000-0844.2021.02.306
[27] 罗丽萍, 朱利东, 向芳, 等, 2008. 成都平原4000aBP以来的孢粉记录与环境变化[J]. 古生物学报, 47(2): 195-202 doi: 10.3969/j.issn.0001-6616.2008.02.006
Luo L P, Zhu L D, Xiang F, et al. , 2008. Spore-pollen assemblage and environmental changes of the Chengdu plain during the late Holocene [J]. Acta Palaeontologica Sinica, 47(2): 195-202. doi: 10.3969/j.issn.0001-6616.2008.02.006
[28] Maddy D, Bridgland D, Green C P, 2000. Crustal uplift in southern England: Evidence from the river terrace records[J]. Geomorphology, 33(3-4): 167-181. doi: 10.1016/S0169-555X(99)00120-8
[29] Maddy D, Demir T, Bridgland D R, et al. , 2008. The Early Pleistocene development of the Gediz River, Western Turkey: An uplift-driven, climate-controlled system? [J]. Quaternary International, (189): 115-128.
[30] 潘保田, 刘小丰, 高红山, 等, 2007. 渭河上游陇西段河流阶地的形成时代及其成因[J]. 自然科学进展, 17(8): 1063-1068 doi: 10.3321/j.issn:1002-008x.2007.08.008
Pan B T, Liu X F, Gao H S, et al. , 2007. Formation age and origin of river terraces in Longxi section of the upper reaches of Weihe river [J]. Progress In Natural Science, 17(8): 1063-1068. doi: 10.3321/j.issn:1002-008x.2007.08.008
[31] Pan B T, Hu X F, Gao H S, et al. , 2013. Late Quaternary River incision rates and rock uplift pattern of the eastern Qilian Shan Mountain, China[J]. Geomorphology, 184(1): 84-97.
[32] 秦锋, 赵艳, 2013. 基于孢粉组合定量重建古气候的方法在中国的运用及思考[J]. 第四纪研究, 33(6): 1054-1068 doi: 10.3969/j.issn.1001-7410.2013.06.02
Qin F, Zhao Y, 2013. Methods of quantitative climate reconstruction based on palynological data and their applications in China [J]. Quaternary Sciences, 33(6): 1054-1068. doi: 10.3969/j.issn.1001-7410.2013.06.02
[33] 石宁, 1996. 上新世—早更新世云杉属和冷杉属在华北地区的发展及其气候指示意义[J]. 第四纪研究, 16(4): 319-328 doi: 10.3321/j.issn:1001-7410.1996.04.004
Shi N, 1996. Development of spruce and fir in North China during the Pliocene and early Pleistocene: Paleoclimatic implications[J]. Quaternary Sciences, 16(4): 319-328. doi: 10.3321/j.issn:1001-7410.1996.04.004
[34] 四川省地质调查院, 2012. 中华人民共和国区域地质调查报告1: 250000成都幅[R].
Sichuan Province Geological Survey, 2012. Regional geological survey report of the people's Republic of China (1: 250000)[R].
[35] Sun X J, Wang B Y, Song C Q, 1996. Pollen-climate response surface analysis of some genus in northern China[J]. Science in China, 26(5): 431-436.
[36] 唐领余, 毛礼米, 吕新苗, 等, 2013. 第四纪沉积物中重要蕨类孢子和微体藻类的古生态环境指示意义[J]. 科学通报, 58(20): 1969-1983 doi: 10.1360/csb2013-58-20-1969
Tang L Y, Mao L M, Lü X M, et al. , 2013. Palaeoecological and palaeoenvironmental significance of some important spores and micro-algae in Quaternary deposits [J]. Chinese Science Bulletin, 58(20): 1969-1983. doi: 10.1360/csb2013-58-20-1969
[37] Taylor S R and McLennan S M, The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985,277.
[38] Tian Y T, Kohn B P, Qiu N S, et al. , 2018. Eocene to Miocene out-of-sequence deformation in the eastern Tibetan Plateau: Insights from shortening structures in the Sichuan Basin[J]. Journal of Geophysical Research-Solid Earth, 123(2): 1840-1855. doi: 10.1002/2017JB015049
[39] Wang A, Smith J A, Wang G C, et al. , 2009. Late quaternary river terrace sequences in the eastern Kunlun range, northern Tibet: a combined record of climatic change and surface uplift[J]. Journal of Asian Earth Sciences, 34(4), 532-543.
[40] 王楠, 钟静, 李勇, 等, 2018. 基于孢粉记录的中国西南地区全新世气候变化研究进展[J]. 应用与环境生物学报, 24(5): 1015-1022
Wang N, Zhong J, Li Y, et al. , 2018. Research progress on pollen-inferred Holocene climate histories in southwestern China [J]. Chinese Journal of Applied and Environmental Biology, 24(5): 1015-1022.
[41] 王全伟, 梁斌, 朱兵, 等, 2013. 川西龙泉山西坡更新世泥石流的发现及其意义[J]. 沉积与特提斯地质, 33(1): 1-4 doi: 10.3969/j.issn.1009-3850.2013.01.001
Wang Q W, Liang B, Zhu B, et al. , 2013. The discovery and significance of the Pleistocene debris flow deposits on the western slope of the Longquan mountains in western Sichuan [J]. Sedimentary Geology and Tethyan Geology, 33(1): 1-4. doi: 10.3969/j.issn.1009-3850.2013.01.001
[42] 王羽珂, 陈浩, 冯兴雷, 等, 2019. 成都平原东郊台地中更新统合江组沉积特征及工程地质意义[J]. 沉积与特提斯地质, 39(3): 33-39 doi: 10.3969/j.issn.1009-3850.2019.03.004
Wang Y K, Chen H, Feng X L, et al. , 2019. Sedimentary characteristics and engineering geological significance of the middle Pleistocene Hejiang Formation in the eastern suburb platform on the Chengdu Plain, Sichuan [J]. Sedimentary Geology and Tethyan Geology, 39(3): 33-39. doi: 10.3969/j.issn.1009-3850.2019.03.004
[43] 魏全伟, 谭利华, 王随继, 2006. 河流阶地的形成、演变及环境效应[J]. 地理科学进展, 25(3): 55-61 doi: 10.3969/j.issn.1007-6301.2006.03.007
Wei Q W, Tan L H, Wang S J, 2006. Formation and evolution of river terrace and environment responses [J]. Progress in Geography, 25(3): 55-61. doi: 10.3969/j.issn.1007-6301.2006.03.007
[44] Westaway R, 2009. Active crustal deformation beyond the SE margin of the Tibetan Plateau: Constraints from the evolution of fluvial systems[J]. Global and Planetary Change, 68(4): 395-417. doi: 10.1016/j.gloplacha.2009.03.008
[45] Westaway R, Bridgland D R, Sinha R, et al. , 2009. Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic: A synthesis of data from IGCP 518[J]. Global and Planetary Change, 68(4), 237-253.
[46] 吴环环, 吴学文, 李玥, 等, 2019. 黄河共和—贵德段河流阶地对青藏高原东北缘晚期隆升的指示[J]. 地质学报, 93(12): 3239-3248 doi: 10.3969/j.issn.0001-5717.2019.12.015
Wu H H, Wu X W, Li Y, et al. , 2019. River terraces in the Gonghe-Guide section of the Yellow River: Implications for the late uplift of the northeastern margin of the Qinghai-Tibet plateau[J]. Acta Geologica Sinica, 93(12): 3239-3248. doi: 10.3969/j.issn.0001-5717.2019.12.015
[47] Xu X W, Wen X Z, Yu G H, et al. , 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7. 9 Wenchuan earthquake, China[J]. Geology, 37(6), 515-518.
[48] 徐崇凯, 刘池洋, 郭佩, 等, 2018. 潜江凹陷古近系潜江组盐间泥岩地球化学特征及地质意义[J]. 沉积学报, 36(3): 617-629
Xu C K, Liu C Y, Guo P, et al. , 2018. Geochemical characteristics and their geological significance of intrasalt mudstones from the Paleogene Qianjiang formation in the Qianjiang gra-ben, Jianghan basin, China [J]. Acta Sedimentologica Sinica, 36(3): 617-629.
[49] 杨景春, 李有利, 2001. 地貌学原理[M]. 北京: 北京大学出版社, 47-58
Yang J C, Li Y L, 2001. Principles of geomorphology [M]. Beijing: Peking University Press, 47-58.
[50] 姚轶锋, 李奎, 刘建, 等, 2005. 成都金沙遗址距今3000年的古气候探讨[J]. 古地理学报, 7(4): 549-560 doi: 10.3969/j.issn.1671-1505.2005.04.013
Yao Y F, Li K, Liu J, et al. , 2005. Discussion on palaeoclimate of Jinsha site in Chengdu in 3000 a BP [J]. Journal of Palaeogeography, 7(4): 549-560. doi: 10.3969/j.issn.1671-1505.2005.04.013
[51] 应立朝, 梁斌, 王全伟, 等, 2012a. 川西平原中更新世网纹红土主量元素地球化学特征[J]. 高校地质学报, 18(4): 759-764
Ying L C, Liang B, Wang Q W, et al. , 2012a. Major elements characters of the middle Pleistocene vermicular red clay from the western Sichuan plain [J]. Geological Journal of China Universities, 18(4): 759-764.
[52] 应立朝, 梁斌, 王全伟, 等, 2012b. 成都平原区成都粘土的粒度特征及其成因意义[J]. 沉积与特提斯地质, 32(1): 72-77
Ying L C, Liang B, Wang Q W, et al. , 2012b. Grain size analysis and origin of the Chengdu clay from the Chengdu plain, Sichuan [J]. Sedimentary Geology and Tethyan Geology, 32(1): 72-77.
[53] 应立朝, 梁斌, 王全伟, 等, 2013. 成都粘土地球化学特征及其对物源和风化强度的指示[J]. 中国地质, 40(5): 1666-1674 doi: 10.3969/j.issn.1000-3657.2013.05.029
Ying L C, Liang B, Wang Q W, et al. , 2013. Geochemical characteristics of Chengdu clay and their implications for provenance and weathering intensity [J]. Geology in China, 40(5): 1666-1674. doi: 10.3969/j.issn.1000-3657.2013.05.029
[54] 袁庆东, 郭召杰, 张志诚, 等, 2006. 天山北缘河流阶地形成及构造变形定量分析[J]. 地质学报, 80(2): 210-216 doi: 10.3321/j.issn:0001-5717.2006.02.005
Yuan Q D, Guo Z J, Zhang Z C, et al. , 2006. The late Cenozoic deformation of terraces on the north flank of Tianshan Mt. and the tectonic evolution [J]. Acta Geologica Sinica, 80(2): 210-216. doi: 10.3321/j.issn:0001-5717.2006.02.005
[55] 张家声, 李燕, 韩竹均, 2003. 青藏高原向东挤出的变形响应及南北地震带构造组成[J]. 地学前缘, (S1): 168-175
Zhang J S, Li Y, Han Z J, 2003. Deformation responses to eastward escaping of the Qinghai-Tibet plateau and tectonics of the South- North seismic zones in China [J]. Earth Science Frontiers, (S1): 168-175.
[56] 张蕾, 张绪教, 武法东, 等, 2013. 太行山南缘晚更新世以来河流阶地的发育及其新构造运动意义[J]. 现代地质, 27(4): 791-798 doi: 10.3969/j.issn.1000-8527.2013.04.005
Zhang L, Zhang X J, Wu F D, et al. , 2013. River terraces' development and significance of neotectonic movement on the southern margin of Taihang mountains since late Pleistocene [J]. Geoscience, 27(4): 791-798. doi: 10.3969/j.issn.1000-8527.2013.04.005
[57] 张天琪, 吕红华, 赵俊香, 等, 2014. 河流阶地演化与构造抬升速率——以天山北麓晚第四纪河流作用为例[J]. 第四纪研究, 34(2): 281-291 doi: 10.3969/j.issn.1001-7410.2014.02.02
Zhang T Q, Lü H H, Zhao J X, et al. , 2014. Fluvial terrace formation and tectonic uplift rate——A case study of late Quaternary fluvial process in the north piedmont of the Tianshan, northwestern China [J]. Quaternary Sciences, 34(2): 281-291. doi: 10.3969/j.issn.1001-7410.2014.02.02
[58] 张威, 周荣军, 何玉林, 等, 2020. 龙泉山西麓山前断裂浅部构造特征及活动性[J]. 大地测量与地球动力学, 40(9): 942-946
Zhang W, Zhou R J, He Y L, et al. , 2020. Characteristic of shallow structure and fault activity in western piedmont of Longquanshan [J]. Journal of Geodesy and Geodynamics, 40(9): 942-946.
[59] 赵辰辰, 王永波, 胥勤勉, 2020.2. 5 Ma以来中国陆地孢粉记录反映的古气候变化[J]. 海洋地质与第四纪地质, 40(4): 175-191
Zhao C C, Wang Y B, Xu Q M, 2020. Climate changes on Chinese continent since 2.5 Ma: Evidence from fossil pollen records [J]. Marine Geology and Quaternary Geology, 40(4): 175-191.
[60] 赵志中, 乔彦松, 王燕, 等, 2007. 成都平原红土堆积的磁性地层学及古环境记录[J]. 中国科学(D辑: 地球科学), 37(3): 370-377
Zhao Z Z, Qiao Y S, Wang Y, et al. , 2007. The magnetic stratigraphy and paleo-environment of red soil accumulation in Chengdu plain [J]. Science in China (Series D), 37(3): 370-377.
[61] 钟宁, 2017. 岷江上游晚更新世湖相沉积的古地震及物源分析[D]. 中国地震局地质研究所.
Zhong N, 2017. Earthquake and provenance analysis of the lacustrine sediments in the upper reaches of the Min River during the late Pleistocene[D]. Institute of Geology, China Earthquake Administration.
[62] 周晓梅, 刘宝健, 介冬梅, 2020. 基于孢粉植物类群气候区间的全新世东北地区气候变化[J]. 吉林师范大学学报(自然科学版), 41(2): 104-110
Zhou X M, Liu B J, Jie D M, 2020. Climate change in northeast China of Holocene based on climate interval of palynological flora [J]. Jilin Normal University Journal (Natural Science Edition), 41(2): 104-110.
[63] 朱宏博, 向芳, 王金元, 等, 2019. 三峡及邻区第四纪沉积物地球化学特征及其对古气候的指示[J]. 成都理工大学学报(自然科学版), 46(6): 746-753
Zhu H B, Xiang F, Wang J Y, et al. , 2019. The geochemical characteristics of sediments in the Three Gorges of Yangtze River and its adjacent areas: Implication for Quaternary paleoclimate [J]. Journal of Chengdu University of Technology (Science and Technology Edition), 46(6): 746-753.
-