火山灰锆石U-Pb定年在沉积岩定年上的应用

曹熔, 张姝婧, 兰中伍. 2023. 火山灰锆石U-Pb定年在沉积岩定年上的应用. 沉积与特提斯地质, 43(2): 464-474. doi: 10.19826/j.cnki.1009-3850.2023.04001
引用本文: 曹熔, 张姝婧, 兰中伍. 2023. 火山灰锆石U-Pb定年在沉积岩定年上的应用. 沉积与特提斯地质, 43(2): 464-474. doi: 10.19826/j.cnki.1009-3850.2023.04001
Cao Rong, Zhang Shujing, Lan Zhongwu. 2023. Application of zircon U-Pb dating of volcanic ash to dating of sedimentary rock. Sedimentary Geology and Tethyan Geology, 43(2): 464-474. doi: 10.19826/j.cnki.1009-3850.2023.04001
Citation: Cao Rong, Zhang Shujing, Lan Zhongwu. 2023. Application of zircon U-Pb dating of volcanic ash to dating of sedimentary rock. Sedimentary Geology and Tethyan Geology, 43(2): 464-474. doi: 10.19826/j.cnki.1009-3850.2023.04001

火山灰锆石U-Pb定年在沉积岩定年上的应用

  • 基金项目: 中国科学院地质与地球物理研究所岩石圈演化国家重点实验室开放课题(SKL-Z202001)
详细信息
    作者简介: 曹熔(1999—),女,硕士研究生,专业为地球化学,研究方向为沉积岩定年。E-mail:cr2210982897@163.com
    通讯作者: 兰中伍(1981—),男,博士,副研究员,主要从事前寒武纪年代地层学研究。E-mail:lzw1981@126.com
  • 中图分类号: P533

Application of zircon U-Pb dating of volcanic ash to dating of sedimentary rock

More Information
  • 本文系统总结了沉积岩定年的意义和常用的定年手段,详细介绍了火山灰锆石U-Pb定年在沉积岩定年上的应用。从火山事件层的分布、火山灰夹层的识别、火山灰锆石的区分、应用实例等方面对前人的研究进行概述,旨在为科研工作者运用火山灰锆石U-Pb定年提供借鉴经验。与传统的成岩矿物K-Ar/Ar-Ar和Rb-Sr定年技术相比,火山灰锆石U-Pb定年在沉积岩定年上具有显著的优势。火山灰夹层具有广泛性和等时性,且锆石U-Pb同位素体系不容易受到扰动,因此火山灰锆石U-Pb定年是高精度沉积岩定年的首选方案。沉积岩定年涉及到野外观察、样品采集、室内岩相学观察及地质年代学分析和年龄解释等多个环节。在这些环节中,识别火山灰夹层是最关键的一点,也是一大难点。这需要明确火山灰夹层的岩石类型并了解火山事件沉积层的分布,在此基础上通过野外观察和室内研究进一步判别,这样可以更加准确地识别出火山灰夹层。此外,火山灰锆石定年需要区分火山灰锆石、碎屑锆石、继承/捕获锆石,可以通过矿物形态学和矿物化学特征来加以区分。

  • 加载中
  • 图 1  典型火山凝灰岩显微图像(a-d引自常丽华等,2009;e-f引自Liu et al., 2015

    Figure 1. 

    图 2  不同类型火山凝灰岩TAS分类图(数据引自王剑等,2008田和明等,2014许峰等,2019Arbuzov et al., 2016)。英安质凝灰岩SS4和SS5(SS5的SiO2含量大于80%而未在图中显示)在本图上投图区域为流纹质凝灰岩,在王剑等(2008)文献里被划分为英安质凝灰岩。

    Figure 2. 

    图 3  不同类别火山凝灰岩微量元素蛛网图和稀土元素配分模式(原始地幔数据引自Sun and McDonough, 1989;其它数据引自王剑等,2008田和明等,2014许峰等,2019Arbuzov et al., 2016

    Figure 3. 

    图 4  火山灰锆石、碎屑锆石和继承锆石的形态特征(a据Lan et al.,2014b修改;b据Li et al.,2021修改;c据Li et al,2021修改)

    Figure 4. 

    图 5  不同岩性里锆石磨圆度三角统计图(数据来源参见附表3-5 1

    Figure 5. 

    图 6  不同岩性里锆石长、短轴大小散点图和长轴大小频率分布统计图(数据来源参见附表3-5 1

    Figure 6. 

    图 7  印度中部Vindhyan盆地火山凝灰岩显微图像和锆石阴极发光图像(引自Rasmussen et al., 2002

    Figure 7. 

    图 8  华南板溪群拱洞组凝灰质沉积岩样品野外照片,显微图像和锆石阴极发光图像(据Lan et al., 2014b修改)

    Figure 8. 

    图 9  样品2013SC05,样品2013SC06和两者中最年轻锆石群体的SIMS U-Pb年龄谐和图(数据引自Lan et al., 2014b

    Figure 9. 

  • [1]

    Arbuzov S I, Mezhibor A M, Spears D A, et al. , 2016. Nature of tonsteins in the Azeisk deposit of the Irkutsk Coal Basin (Siberia, Russia)[J]. International Journal of Coal Geology, 153: 99-111. doi: 10.1016/j.coal.2015.12.001

    [2]

    Aziz H A, Di Stefano A, Foresi L M, et al. , 2008. Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg 42A, Site 372 (Western Mediterranean)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 257(1-2): 123-138.

    [3]

    Barfod G H, Otero O, Albarède F, 2003. Phosphate Lu–Hf geochronology[J]. Chemical Geology, 200(3-4): 241-253. doi: 10.1016/S0009-2541(03)00202-X

    [4]

    常丽华, 曹林, 高福红, 2009. 火成岩鉴定手册[M]. 北京: 地质出版社.

    Chang L H, Cao L, GaO F H, 2009. Igneous rock Identification Manual[M]. Beijing: Geological Publishing House.

    [5]

    Chen D F, Dong W Q, Zhu B Q, et al. , 2004. Pb–Pb ages of Neoproterozoic Doushantuo phosphorites in South China: constraints on early metazoan evolution and glaciation events[J]. Precambrian Research, 132(1-2): 123-132. doi: 10.1016/j.precamres.2004.02.005

    [6]

    陈宣谕, 徐义刚, Martin M, 2014. 火山灰年代学: 原理与应用[J]. 岩石学报, 30(12): 3491-3500

    Chen X Y, Xu Y G, Martin M, 2014. Tephrochronology: Principles and applications[J]. Acta Petrologica Sinica, 30(12): 3491-3500.

    [7]

    Courtillot V E, Renne P R, 2003. On the ages of flood basalt events[J]. Comptes Rendus Geoscience, 335(1): 113-140. doi: 10.1016/S1631-0713(03)00006-3

    [8]

    邓奇, 崔晓庄, 汪正江, 等, 2023. 扬子陆块北缘构造演化新认识: 来自原花山群年代学和地球化学的制约[J]. 沉积与特提斯地质, 43(1): 212-225 doi: 10.19826/j.cnki.1009-3850.2022.10005

    Deng Q, Cui X Z, Wang Z J, et al. , 2023. Huashan GroupBlock: Constraints from the geochronology and geochemistry of theNew understanding of the tectonic evolution of the northern margin of Yangtze[J]. Sedimentary Geology and Tethyan Geology, 43(1): 212-225. doi: 10.19826/j.cnki.1009-3850.2022.10005

    [9]

    Ernst R E, 2014. Large Igneous Provinces[M]. London: Cambridge University Press.

    [10]

    冯宝华, 董茹丽, 1992. 火山事件沉积粘土岩的研究及其意义[J]. 中国区域地质, 2: 149-155

    Feng B H, Dong R L, 1992. The study of volcanic event sedimentary claystone and its significance[J]. Regional Geology of China, 2: 149-155.

    [11]

    冯宝华, 2005. 火山事件泥岩夹矸的沉积学及其自然伽马测井地层学[J]. 测井技术信息, 18(3): 22-24

    Feng B H, 2005. Sedimentology and gamma logging stratigraphy of volcanic event mudstone gangue[J]. Well Logging Technology Information, 18(3): 22-24.

    [12]

    Godet A, Föllmi K B, Stille P, et al. , 2011. Reconciling strontium-isotope and K-Ar ages with biostratigraphy: the case of the Urgonian platform, Early Cretaceous of the Jura Mountains, Western Switzerland[J]. Swiss Journal of Geosciences, 104(1): 147-160. doi: 10.1007/s00015-011-0053-5

    [13]

    郭锋, 范蔚茗, 李超文, 等, 2007. 延吉地区古新世埃达克岩捕获锆石U-Pb年龄、Hf同位素和微量元素地球化学对区域中酸性岩浆演化的指示[J]. 岩石学报, 23(2): 413-422

    Guo F, Fan W M, Li C W, et al. , 2007. Zircon U-Pb age, U-Pb ages, Hf isotope and trace element compositions of captured zircons of the Paleocene adakites in the Yanji area, NE China: Implications for magmatic evolution of intermediate-felsic magmas[J]. Acta Petrologica Sinica, 23(2): 413-422.

    [14]

    Hess J C, Lippolt H J, 1986. 40Ar/39Ar ages of tonstein and tuff sanidines: New calibration points for the improvement of the Upper Carboniferous time scale[J]. Chemical Geology: Isotope Geoscience section, 59(2-3): 143-154. doi: 10.1016/0168-9622(86)90066-7

    [15]

    Jahn B-M, Cuvellier H, 1994. Pb-Pb and U-Pb geochronology of carbonate rocks: an assessment[J]. Chemical Geology, 115(1-2): 125-151. doi: 10.1016/0009-2541(94)90149-X

    [16]

    Lan Z W, Li X-H, Zhu M, et al. , 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U–Pb zircon age constraints and regional and global significance[J]. Precambrian Research, 263: 123-141. doi: 10.1016/j.precamres.2015.03.012

    [17]

    Lan Z W, Chen Z Q, Li X H, et al. , 2013. Hydrothermal origin of the Paleoproterozoic xenotime from the King Leopold Sandstone of the Kimberley Group, Kimberley, NW Australia: Implications for a ca 1.7 Ga far-field hydrothermal event[J]. Australian Journal of Earth Sciences, 60(4): 497-508. doi: 10.1080/08120099.2013.806360

    [18]

    Lan Z W, Huyskens M H, Lu K, et al. , 2020. Toward refining the onset age of Sturtian glaciation in South China[J]. Precambrian Research, 338: 105555. doi: 10.1016/j.precamres.2019.105555

    [19]

    Lan Z W, Li X H, Chen Z Q, et al. , 2014a. Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton: Implications for regional stratigraphic correlation and early evolution of eukaryotes[J]. Precambrian Research, 251: 21-32. doi: 10.1016/j.precamres.2014.06.012

    [20]

    Lan Z W, Li X H, Zhu M Y, et al. , 2014b. A rapid and synchronous initiation of the wide spread Cryogenian glaciations[J]. Precambrian Research, 255: 401-411. doi: 10.1016/j.precamres.2014.10.015

    [21]

    Lan Z W, Roberts N M W, Zhou Y, et al., 2022. Application of in situ U-Pb carbonate geochronology to Stenian-Tonian successions of North China. Precambrian Research, 370, 106551.

    [22]

    Lan Z W, Wu S T, Wang F Y, et al., 2023. A ca. 290 Ma hydrothermal calcite in Cambrian dolostone. Marine and Petroleum Geology, 147, 106011.

    [23]

    Lee† J K W, Williams I S, Ellis D J, 1997. Pb, U and Th diffusion in natural zircon[J]. Nature, 390(6656): 159-162. doi: 10.1038/36554

    [24]

    李长民, 2009. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 32(3): 161-174

    Li C M, 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons[J]. Geological Survey and Research, 32(3): 161-174.

    [25]

    李怀坤, 陆松年, 相振群, 等, 2007. 北祁连山西段北大河岩群碎屑锆石SHRIMP U-Pb年代学研究[J]. 地质论评, 53(1): 132-140

    Li H K, Lu S N, Xiang Z Q, et al. , 2007. SHRIMP U-Pb Geochronological research on detrital zircons from the Beidahe Complex-Group in the western segment of the North Qilian Mountains, Northwest China[J]. Geological Review, 53(1): 132-140.

    [26]

    Li W J, Shi Z J, Yin G, et al. , 2021. Origin and tectonic implications of the early Middle Triassic tuffs in the western Yangtze Craton: Insight into whole-rock geochemical and zircon U-Pb and Hf isotopic signatures[J]. Gondwana Research, 93: 142-161. doi: 10.1016/j.gr.2020.12.030

    [27]

    刘嘉麒, 孙春青, 游海涛, 2018. 全球火山灰年代学研究概述[J]. 中国科学(地球科学), 48(1): 1-29

    Liu J Q, Sun C Q, You H T, 2018. An overview of global tephrochronology (in Chinese)[J]. Scientia Sinica(Terrae), 48(1): 1-29.

    [28]

    Liu P J, Li X H, Chen S M, et al. , 2015. New SIMS U–Pb zircon age and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 60(10): 958-963. doi: 10.1007/s11434-015-0790-3

    [29]

    Mcnaughton N J, Rasmussen B, Fletcher I R, 1999. SHRIMP uranium-lead dating of diagenetic xenotime in siliciclastic sedimentary rocks[J]. Science, 285(5424): 78-80. doi: 10.1126/science.285.5424.78

    [30]

    Montano D, Gasparrini M, Gerdes A, et al. , 2021. In-situ U-Pb dating of Ries Crater lacustrine carbonates (Miocene, South-West Germany): Implications for continental carbonate chronostratigraphy[J]. Earth and Planetary Science Letters, 568: 117011. doi: 10.1016/j.jpgl.2021.117011

    [31]

    Perez Loinaze V S, Vera E I, Passalia M G, et al. , 2013. High-precision U–Pb zircon age from the Anfiteatro de Ticó Formation: Implications for the timing of the early angiosperm diversification in Patagonia[J]. Journal of South American Earth Sciences, 48: 97-105. doi: 10.1016/j.jsames.2013.08.005

    [32]

    Phillips D, Matchan E L, Dalton H, et al. , 2022. Revised astronomically calibrated 40Ar/39Ar ages for the Fish Canyon Tuff sanidine – Closing the interlaboratory gap[J]. Chemical Geology, 597: 120815. doi: 10.1016/j.chemgeo.2022.120815

    [33]

    Pigage L C, Crowley J L, Pyle L J, et al. , 2012. U-Pb zircon age of an Ordovician tuff in southeast Yukon: implications for the age of the Cambrian-Ordovician boundary[J]. Canadian Journal of Earth Sciences, 49(6): 732-741. doi: 10.1139/e2012-017

    [34]

    Qin J, Zhong Y T, Zhu L D, et al. , 2021. Temporal constraints on the Dalazi Biota from Luozigou Basin, northeast China[J]. Cretaceous Research, 128: 104977. doi: 10.1016/j.cretres.2021.104977

    [35]

    Rasbury E T, Cole J M, 2009. Directly dating geologic events: U−Pb dating of carbonates[J]. Reviews of Geophysics, 47(3).

    [36]

    Rasmussen B, 2005. Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology[J]. Earth-Science Reviews, 68(3-4): 197-243.

    [37]

    Rasmussen B, Bose P K, Sarkar S, et al. , 2002. 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: Possible implications for early evolution of animals[J]. Geology, 30(2): 103-106. doi: 10.1130/0091-7613(2002)030<0103:GUPZAF>2.0.CO;2

    [38]

    Ray J S, Martin M W, Veizer J N, et al. , 2002. U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India[J]. Geology, 30(2): 131-134. doi: 10.1130/0091-7613(2002)030<0131:UPZDAS>2.0.CO;2

    [39]

    Sarangi S, Gopalan K, Kumar S, 2004. Pb–Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution[J]. Precambrian Research, 132(1-2): 107-121. doi: 10.1016/j.precamres.2004.02.006

    [40]

    桑树勋, 刘焕杰, 贾玉如, 1999. 华北中部太原组火山事件层与煤岩层对比——火山事件层的沉积学研究与展布规律(Ⅰ)[J]. 中国矿业大学学报, 28(1): 46-49

    Sang S X, Liu H J, Jia Y L, 1999. Volcanic Event Strata and Correlation of Coals and Rocks of Taiyuan Formation in Central North China ——Sedimentary Study of Volcanic Event Strata and Their Distribution(I)[J]. Journal of China University of Mining & Technology, 28(1): 46-49.

    [41]

    Sarna-Wojcicki A M, Pringle M S, Wijbrans J, 2000. New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary[J]. Journal of Geophysical Research: Solid Earth, 105(B9): 21431-21443.

    [42]

    Schmitz M D, Bowring S A, 2001. U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks[J]. Geochimica et Cosmochimica Acta, 65(15): 2571-2587. doi: 10.1016/S0016-7037(01)00616-0

    [43]

    Spears D A, 2012. The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks[J]. International Journal of Coal Geology, 94: 22-31. doi: 10.1016/j.coal.2011.09.008

    [44]

    Sun S S, Mcdonough W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [45]

    Taylor K G, Curtis C D, 1995. Stability and facies association of early diagenetic mineral assemblages: An example from a Jurassic ironstone-mudstone succession, U. K[J]. Journal of Sedimentary Research, 65(2a): 358-368. doi: 10.1306/D42680C2-2B26-11D7-8648000102C1865D

    [46]

    田和明, 代世峰, 李大华, 等, 2014. 重庆南川晚二叠世凝灰岩的元素地球化学特征[J]. 地质论评, 60(1): 169-177

    Tian H M, Dai S F, Li D H, et al. , 2014. Geochemical Features of the Late Permian Tuff in Nanchuan District, Chongqing, Southwestern China[J]. Geological Review, 60(1): 169-177.

    [47]

    Tucker R T, Roberts E M, Hu Y, et al. , 2013. Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia's Late Cretaceous dinosaur faunas[J]. Gondwana Research, 24(2): 767-779. doi: 10.1016/j.gr.2012.12.009

    [48]

    王剑, 付修根, 陈文西, 等, 2008. 北羌塘沃若山地区火山岩年代学及区域地球化学对比——对晚三叠世火山-沉积事件的启示[J]. 中国科学(D辑: 地球科学), 38(1): 33-43

    Wang J, Fu X G, Chen W X, et al. , 2008. Geochronology and regional geochemistry of volcanic rocks in Woluo Mountain area, Northern Qiangtang: implications for Late Triassic volcano-sedimentary events[J]. Science in China (Series D: Earth Sciences), 38(1): 33-43.

    [49]

    王亚东, 张涛, 袁四化, 等, 2022. 碎屑锆石U-Pb年龄有效性初探——以青藏高原东北缘酒西盆地为例[J]. 沉积学报, 40(1): 106-118

    Wang Y D, Zhang T, Yuan S H, et al. , 2022. Preliminary Study of Validity of Detrital Zircon U-Pb Dating: A case study of Jiuxi Basin, NE Tibetan Plateau[J]. Acta Sedimentologica Sinica, 40(1): 106-118.

    [50]

    吴劲薇, 陈小明, 杨忠芳, 2001. 成岩伊利石K-Ar年龄分析及其意义[J]. 高校地质学报, 7(4): 444-448 doi: 10.16108/j.issn1006-7493.2001.04.010

    Wu J W, Chen X M, Yang Z F, 2001. Diagenetic illite K-Ar age analysis and its significance[J]. Geological Journal of China Universities, 7(4): 444-448. doi: 10.16108/j.issn1006-7493.2001.04.010

    [51]

    许锋, 朱增伍, 李长春, 等, 2019. 鄂尔多斯盆地东南部延长组长7段厚层熔结凝灰岩特征及其地质意义[J]. 现代地质, 33(2): 389-400 doi: 10.19657/j.geoscience.1000-8527.2019.02.14

    Xu F, Zhu Z W, Li C C, et al. , 2019. Characteristics and Geological Significance of Thick Ignimbrite Beds of Yanchang Formation (Chang 7 Section) in Southeastern Ordos Basin[J]. Geoscience, 33(2): 389-400. doi: 10.19657/j.geoscience.1000-8527.2019.02.14

    [52]

    Yang C, Rooney Alan D, Condon Daniel J, et al. , 2021. The tempo of Ediacaran evolution[J]. Science Advances, 7(45): 10.

    [53]

    杨经绥, 吴才来, 夏林圻, 等, 2009. 火成岩的10年研究进展和未来的挑战[J]. 地质论评, 55(3): 406-419 doi: 10.3321/j.issn:0371-5736.2009.03.012

    Yang J S, Wu C L, Xia L Q, et al. , 2009. A decade of progress and challenges for the future in igneous petrology[J]. Geological Review, 55(3): 406-419. doi: 10.3321/j.issn:0371-5736.2009.03.012

    [54]

    杨競红, 蒋少涌, 凌洪飞, 等, 2005. 黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J]. 地学前缘, 12(2): 143-150

    Yang J H, Jiang S Y, Ling H F, et al. , 2005. Re-Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 12(2): 143-150.

    [55]

    于炳松, 赵志丹, 苏尚国 2012. 岩石学(第二版)[M] 北京: 地质出版社.

    Yu B S, Zhao Z D, Su S G, 2012. Petrology (2nd edition)[M]. Beijing: Geological Publishing House.

    [56]

    Zhang S J, Cao R, Lan Z W, et al. , 2022. SIMS Pb-Pb dating of phosphates in the Proterozoic strata of SE North China Craton: Constraints on eukaryote evolution[J]. Precambrian Research, 371: 106562. doi: 10.1016/j.precamres.2022.106562

    [57]

    张彦, 陈克龙, 刘新宇, 2007. 沉积岩中自生伊利石K-Ar定年研究——存在问题及原因讨论[J]. 岩矿测试, 26(2): 117-120 doi: 10.3969/j.issn.0254-5357.2007.02.009

    Zhang Y, Chen K L, Liu X Y, 2007. Study on the K-Ar Dating of Diagenetic Illite in Sedimentary Rock Samples——Question and Discussion[J]. Rock and Mineral Analysis, 26(2): 117-120. doi: 10.3969/j.issn.0254-5357.2007.02.009

    [58]

    Zhu R X, Li X H, Hou X G, et al. , 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary[J]. Science In China Series D-Earth Sciences, 52(9): 1385-1392. doi: 10.1007/s11430-009-0152-6

  • 加载中

(9)

计量
  • 文章访问数:  930
  • PDF下载数:  136
  • 施引文献:  0
出版历程
收稿日期:  2023-01-29
修回日期:  2023-03-29
录用日期:  2023-03-29
刊出日期:  2023-06-30

目录