扬子西缘新元古代裂谷盆地演化的年代学新证据及其意义

彭杰, 谢渊, 庞维华, 任光明, 崔晓庄, 任飞, 陈风霖, 刘星宇. 2023. 扬子西缘新元古代裂谷盆地演化的年代学新证据及其意义. 沉积与特提斯地质, 43(2): 452-463. doi: 10.19826/j.cnki.1009-3850.2022.06013
引用本文: 彭杰, 谢渊, 庞维华, 任光明, 崔晓庄, 任飞, 陈风霖, 刘星宇. 2023. 扬子西缘新元古代裂谷盆地演化的年代学新证据及其意义. 沉积与特提斯地质, 43(2): 452-463. doi: 10.19826/j.cnki.1009-3850.2022.06013
PENG Jie, XIE Yuan, PANG Weihua, REN Guangming, CUI Xiaozhuang, Ren Fei, CHEN Fenglin, LIU Xingyu. 2023. New zircon U-Pb chronology of the Neoproterozoic rift basin evolution in the western Yangtze Block and its geological significance. Sedimentary Geology and Tethyan Geology, 43(2): 452-463. doi: 10.19826/j.cnki.1009-3850.2022.06013
Citation: PENG Jie, XIE Yuan, PANG Weihua, REN Guangming, CUI Xiaozhuang, Ren Fei, CHEN Fenglin, LIU Xingyu. 2023. New zircon U-Pb chronology of the Neoproterozoic rift basin evolution in the western Yangtze Block and its geological significance. Sedimentary Geology and Tethyan Geology, 43(2): 452-463. doi: 10.19826/j.cnki.1009-3850.2022.06013

扬子西缘新元古代裂谷盆地演化的年代学新证据及其意义

  • 基金项目: 国家自然科学基金项目(41872120、92055314)和中国地质调查局项目(DD20221635)联合资助
详细信息
    作者简介: 彭杰(1997—),男,硕士研究生,地质学专业,研究方向:构造地质学。E-mail:pengjiecdut@qq.com
    通讯作者: 庞维华(1984—),女,高级工程师,主要从事前寒武纪地质学研究。E-mail:cdweihuapang@qq.com
  • 中图分类号: P588.14+5;P588.2

New zircon U-Pb chronology of the Neoproterozoic rift basin evolution in the western Yangtze Block and its geological significance

More Information
  • 扬子西缘康滇裂谷是华南新元古代裂谷系的主要组成部分,对理解华南新元古代裂谷盆地演化与Rodinia超大陆裂解的响应关系具有重要意义。澄江组是康滇裂谷最为典型的沉积充填序列,其时代的准确限定是解析Rodinia超大陆裂解背景下盆地演化的重要前提。本文对滇东北巧家谓姑地区澄江组火山岩开展了LA-ICP-MS锆石U-Pb同位素年代学分析,获得澄江组底部玄武岩年龄806.4±6.7 Ma和下部凝灰岩年龄788.4±5.9 Ma。结合已有年龄数据,将澄江组沉积时代准确限定为800~720 Ma,与开建桥组及陆良组上部为同期异相产物。康滇裂谷的三个次级盆地演化基本同步,均于800 Ma左右开始全面接受沉积,是Rodinia超大陆的裂解的响应。

  • 加载中
  • 图 1  扬子西缘新元古代康滇裂谷盆地区划示意图(据付坤荣,2020修改)

    Figure 1. 

    图 2  巧家地区澄江组地质简图及剖面柱状图(据云南省地质矿产局,1989修改)

    Figure 2. 

    图 3  巧家地区澄江组玄武岩、凝灰岩野外露头及显微照片

    Figure 3. 

    图 4  澄江组玄武岩样品(11CJB-N1)和凝灰岩样品(13CJB-N2)的代表性锆石CL图像

    Figure 4. 

    图 5  澄江组玄武岩样品(11CJB-N1)和凝灰岩样品(13CJB-N2)的锆石U-Pb年龄谐和图

    Figure 5. 

    图 6  扬子西缘新元古代澄江组及开建桥组的典型露头照片

    Figure 6. 

    图 7  扬子西缘新元古代康滇裂谷盆地澄江组及相关地层对比关系

    Figure 7. 

  • [1]

    Bose S, Das K, Torimoto J, et al. , 2016. Evolution of the Chilka Lake granulite complex, northern Eastern Ghats Belt, India: First evidence of ~780 Ma decompression of the deep crust and its implication on the India-Antarctica correlation[J]. Lithos, 263, 161-189.

    [2]

    Black L P, Seymour D B, Corbett K D, et al. , 1997. Dating Tasmania’s oldest geological events [J]. In: Canberra, ACT: Australian Geological Survey Organisation Record, 15: 57.

    [3]

    Brandt S, Raith M M, Schenk V, et al. , 2014. Crustal evolution of the Southern Granulite Terrane, south India: New geochronological and geochemical data for felsic orthogneisses and granites [J]. Precambrian Research, 246, 91-122.

    [4]

    Calver C R, Meffre S, Everard J L. , 2013. Felsic porphyry sills in Surprise bay formation near Currie, King island, dated at ~775 Ma (LA- ICPMS, U-Pb on zircon) [M]. Hobart, TAS: Tasmanian Geological Survey Record, 10.

    [5]

    Chatterjee A, Das K, Bose S, et al. , 2017. Zircon U-Pb SHRIMP and monazite EPMA U-Th-total Pb geochronology of granulites of the western boundary, Eastern Ghats Belt, India: a new possibility for Neoproterozoic exhumation history [J]. Geological Society, London, Special Publications, 457(1): 105-140. doi: 10.1144/SP457.1

    [6]

    崔晓庄, 江新胜, 王剑, 等, 2013. 滇中新元古代澄江组层型剖面锆石U-Pb年代学及其地质意义[J]. 现代地质, 27(3): 547-556 doi: 10.3969/j.issn.1000-8527.2013.03.005

    Cui X Z, Jiang X S, Wang J, et al. , 2013. Zircon U-Pb geochronology for the stratotype section of the Neoproterozoic Chengjiang Formation in central Yunnan and its geological significance[J]. Geoscience, 27 (3): 547-556 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2013.03.005

    [7]

    崔晓庄, 江新胜, 王剑, 等, 2014. 滇中新元古代裂谷盆地充填序列及演化模式: 对Rodinia超大陆裂解的响应[J]. 沉积学报, 32(3): 399-409 doi: 10.14027/j.cnki.cjxb.2014.03.004

    Cui X Z, Jiang X S, Wang, J, et al. , 2014. Filling sequence and evolution model of the Neoproterozoic Rift Basin in central Yunnan Province, South China: Response to the breakup of Rodinia Supercontinent[J]. Acta Sedimentologica Sinca, 32 (3): 399-409 (in Chinese with English abstract). doi: 10.14027/j.cnki.cjxb.2014.03.004

    [8]

    崔晓庄, 江新胜, 王剑, 等, 2015. 扬子西缘澄江组底部玄武岩形成时代新证据及其地质意义[J]. 岩石矿物学杂志, 34(1): 1-13 doi: 10.3969/j.issn.1000-6524.2015.01.001

    Cui X Z, Jiang X S, Wang J, et al. , 2015. New evidence for the formation age of basalts from the lowermost Chengjiang Formation in the western Yangtze Block and its geological implications[J]. Mineralogy and Petrology, 34(1): 1-13 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2015.01.001

    [9]

    Dasgupta S, Bose S, Bhowmik S K, et al. , 2017. The Eastern Ghats Belt, India, in the context of supercontinent assembly [J]. Geological Society, London, Special Publications, 457(1): 87-104. doi: 10.1144/SP457.5

    [10]

    付坤荣, 2020. 康滇裂谷充填序列关键层位定年、沉积地质特征及其大地构造意义[D]. 中国地质大学(北京).

    Fu K R. 2020. Dating of the key formations, sedimentary geological characteristics and the tectonic significance of rift filling sequence in Kangdian Rift[D]. China University of Geosciences(Beijing) (in Chinese with English abstract).

    [11]

    高永娟, 林仕良, 秦雅东, 等, 2021. 扬子陆块西缘云南东川地区澄江组碎屑锆石U-Pb年龄、Hf同位素组成及其对物源和地壳演化的约束[J]. 地质通报, 40(11): 1943 − 1956

    Gao Y J, Lin S L, Qin Y D, et al. , 2021. U-Pb age and Hf isotope composition of detrital zircons from the Chengjiang Formation in Dongchuan area, Yunnan Province of the western Yangtze Block and its constraints on provenance and crustal evolution[J]. Geoligical Bulletin of China. 40(11): 1943 − 1956 (in Chinese with English abstract).

    [12]

    Ghosh J G, deWit M J, Zartman R E. 2004. Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies[J]. Tectonics, 23(3): 1 − 38.

    [13]

    Harlan S S, Heaman L M, LeCheminant A N, et al. , 2003. Gunbarrel mafic magmatic event: a key 780 Ma time marker for Rodinia plate reconstructions[J]. Geology, 31(12), 1053-1056.

    [14]

    江新胜, 王剑, 崔晓庄, 等, 2012. 滇中新元古代澄江组锆石SHRIMPU-Pb年代学研究及其地质意义[J]. 中国科学: 地球科学, 42(10): 1496 − 1507.

    Jiang X S, Wang J, Cui X Z, et al. , 2012. Zircon SHRIMP U-Pb geochronology of the Neoproterozoic Chengjiang Formation in central Yunnan Province (SW China) and its geological significance[J]. Sci China Earth Sci, 55: 1815 − 1826 (in Chinese with English abstract).

    [15]

    江卓斐, 2016. 扬子西缘新元古代冰川启动时间、期次及其构造-岩相古地理演化[D]. 中国地质大学(北京).

    Jiang Z F. 2016. Onset time and periods of the Neoproterozoic glaciers in western Yangtze Block and the tectonic-lithofacies palaeogeography[D]. China University of Geosciences(Beijing) (in Chinese with English abstract).

    [16]

    Jing X Q, Evans D A, Yang Z Y, et al. , 2021. Inverted South China: A novel configuration for Rodinia and its breakup[J]. Geology, 49(4): 463- 467. doi: 10.1130/G47807.1

    [17]

    李世麟, 郑发模, 1984. 四川西南部震旦系研究. 四川西南部震旦系的岩性特征及沉积环境[J]. 成都地质学院学报, S1: 50 − 79+93 − 95

    Li S L, Zheng F M, 1984. The lithological characteristics and sedimentary environments of Sinian in Southwest Sichuan[J]. Journal of Chengdu Institute of Geology, S1: 50 − 79+93 − 95 (in Chinese with English abstract).

    [18]

    Li X H, Li Z X, Zhou H W, et al. , 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia[J]. Precambrian Research, 113(1-2): 135-154. doi: 10.1016/S0301-9268(01)00207-8

    [19]

    Li X H, Li Z X, Ge W C, et al. , 2003a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? [J]. Precambrian Research, 122(1-4): 45-83. doi: 10.1016/S0301-9268(02)00207-3

    [20]

    Li Z X, Li X H, Kinny P D, et al. , 1999. The breakup of Rodinia : did it start with a mantle plume beneath South China? [J]. Earth and Planetary Science Letters, 173(3): 0-181.

    [21]

    Li Z X, Li X H, Kinny P D, et al. , 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents : evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122(1): 85-109.

    [22]

    Li Z X, Bogdanova S V, Collins A S, et al. , 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 160: 179-210. doi: 10.1016/j.precamres.2007.04.021

    [23]

    刘鸿允, 1991. 中国震旦系[M]. 北京: 科学出版社, 1-388

    Liu H Y, 1991. Sinian System in China [M]. Beijing: Science Press, 1-388 (in Chinese with English abstract).

    [24]

    刘军平, 夏彩香, 孙柏东, 等, 2019. 滇中易门地区新元古代澄江组凝灰岩锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 39(1): 14-21 doi: 10.3969/j.issn.1009-3850.2019.01.002

    Liu J P, Xia C X, Sun, B D, et al. , 2019. Tuffs from the Neoproterozoic Chengjiang Formation in the Yimen region, central Yunnan: Zircon U-Pb dating and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 39(1): 14-21 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2019.01.002

    [25]

    刘石磊, 崔晓庄, 汪长林, 等, 2020. 扬子西缘新元古代中期裂谷作用: 来自年代学与沉积学的新证据[J]. 中国科学: 地球科学, 45(8): 3082 − 3093

    Liu S L, Cui X Z, Wang C L, et al., 2020. New sedimentological and geochronological evidence for mid-Neoproterozoic rifting in western Yangtze Block, South China. Earth Science, 45(8): 3082 − 3093 (in Chinese with English abstract).

    [26]

    Liu Y S, Hu Z C, Zong K Q, et al. , 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    [27]

    陆俊泽, 江新胜, 王剑, 等, 2013. 滇东北巧家地区新元古界澄江组SHRIMP锆石U-Pb年龄及其地质意义[J]. 矿物岩石, 33(2): 65-71 doi: 10.19719/j.cnki.1001-6872.2013.02.010

    Lu J Z, Jiang X S, Wang J, et al. , 2013. SHIMP zircon U-Pb age and its geological significance of Neoproterozoic Chengjiang Formation in Qiaojia area, Northeast Yunnan[J]. J Mineral Petrol, 33(2): 65-71 (in Chinese with English abstract). doi: 10.19719/j.cnki.1001-6872.2013.02.010

    [28]

    Ludwig K R 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication. No. 4.

    [29]

    马搏杰, 2019. 康滇北部开建桥组沉积地质特征及其盆地动力学意义[D]. 中国地质大学(北京).

    Ma B J, 2019. Onset Time and Periods of the Neoproterozoic Glaciers in Western Yangtze Block and theTectonic-lithofacies Palaeogeograph[D]. China University of Geosciences(Beijing) (in Chinese with English abstract).

    [30]

    Mulder J A, Everard J L, Cumming G, et al., 2020. Neoproterozoic opening of the Pacific Ocean recorded by multi-stage rifting in Tasmania, Australia[J], Earth-Science Reviews, 201: 103041.

    [31]

    Park J K, Buchan K L, Harlan S S. , 1995. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America[J]. Earth and Planetary Science Letters, 132 (1-4), 129-139.

    [32]

    Plavsa D, Collins A S, Foden J F, et al. , 2012. Delineating crustal domains in Peninsular India: age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block[J]. Precambrian Research, 198, 77-93.

    [33]

    Ranjan S, Upadhyay D, Abhinay K, et al. , 2018. Zircon geochronology of deformed alkaline rocks along the Eastern Ghats Belt margin: India-Antarctica connection and the Enderbia continent[J]. Precambrian Research, 310, 407-424.

    [34]

    孙家聪, 1985. 云南罗次澄江组下部火山岩系的发现与震旦系底界年龄的讨论[J]. 地质科学, (4): 354-363

    Sun J C, 1985. Discovery of the volcanic rock series in the Chengjiang Formation at Luoci area and discussion on the age of the basal limit of the Sinian system, Yunnan[J]. Scientia Geologica Sinica, (4): 354-363 (in Chinese with English abstract).

    [35]

    Turner N J, Black L P, Kamperman M, 1998. Dating of Neoproterozoic and Cambrian orogenies in Tasmania[J]. Aust. J. Earth Sci, 45: 789-806. doi: 10.1080/08120099808728433

    [36]

    Wang J, Li Z X, 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up[J]. Precambrian Research, 122(1-4): 0-158.

    [37]

    王剑, 2000. 华南新元古代裂谷盆地演化: 兼论与Rodinia解体的关系[M]. 北京: 科学出版社, 1-131.

    Wang J, 2000. Evolution of the Neoproterozoic rift basin in South China: Implications for the disintegration of Rodinia[M]. Beijing: Science Press (in Chinese with English abstract).

    [38]

    王剑, 江新胜, 卓皆文, 等, 2019. 华南新元古代裂谷盆地演化与岩相古地理[M]. 北京: 科学出版社.

    Wang J, Jiang X S, Zhuo J W, et al. , 2019. Neoproterozoic rift basin evolution and lithofacies paleogeography in South China[M]. Beijing: Science Press (in Chinese with English abstract).

    [39]

    Wang W, Cawood P A, Zhou M F, et al. , 2017. Low δ18O rhyolites from the Malani igneous suite: A positive test for South China and NW India linkage in Rodinia[J]. Geophysical Research Letters, 44(20): 10-298.

    [40]

    Wang X L, Zhou J C, Qiu J S, et al. , 2004. Geochemistry of the Meso-to Neoproterozoic basic-acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen[J]. Precambrian Research, 135(1-2): 0-103.

    [41]

    Wang X C, Li X H, Li W X, et al. , 2009. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rock s in South China: A review[J]. Gondwana Research, 15: 381-395. doi: 10.1016/j.gr.2008.08.003

    [42]

    Wang X C, Li Z X, Li X H, et al. , 2011. Geochemical and Hf-Nd isotope data of Nanhua rift sedimentary and volcaniclastic rocks indicate a Neoproterozoic continental flood basalt provenance[J]. Lithos, 127: 427-440. doi: 10.1016/j.lithos.2011.09.020

    [43]

    吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, (16): 1589-1604 doi: 10.3321/j.issn:0023-074X.2004.16.002

    Wu Y B, Zheng Y F, 2004. Zircon genetic mineralogy and its constraints on U-Pb age interpretation[J]. Chinese science bulletin, (16): 1589-1604 (in Chinese with English abstract). doi: 10.3321/j.issn:0023-074X.2004.16.002

    [44]

    云南省地质矿产局, 1990. 云南省区域地质志[M]. 北京: 地质出版社, 236-255

    Geology and Mineral Resources Bureau of Yunnan Province, 1990. Regional geology of Yunnan Province [M]. Beijing: Geological Publishing House, 236-255 (in Chinese with English abstract).

    [45]

    Zhang C L, Yang D S, Wang H Y, et al. , 2010. Neoproterozoic Mafic Dykes and Basalts in the Southern Margin of Tarim, Northwest China: Age, Geochemistry and Geodynamic Implications[J]. Acta Geologica Sinica, 84(3), 549-562.

    [46]

    Zhang C L, Zou H B, Wang H Y, et al. , 2012. Multiple phases of the Neoproterozoic igneous activity in Quruqtagh of the northeastern Tarim Block, NW China: Interaction between plate subduction and mantle plume? [J]. Precambrian Research, 222-223, 488-502.

    [47]

    Zhang L F, Jiang W B, Wei C J, et al. , 1999. Discovery of deerite from the Aksu Precambrian blueschist terrane and its geological significance[J]. Science in China Series D: Earth Sciences, 42(3): 233-239.

    [48]

    Zhao G C, Cawood P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54. doi: 10.1016/j.precamres.2012.09.017

    [49]

    《中国地层典》编委会, 1996. 中国地层典-新元古界[M]. 北京: 地质出版社, 1-117

    《Chinese Stratigraphic Code》Editor Board, 1996. Neoproterozoic Strata [M]. Beijing: Geological Publishing House, 1-117 (in Chinese with English abstract).

    [50]

    Zhou J L, Shao S, Luo Z H, et al. , 2015. Geochronology and geochemistry of Cryogenian gabbros from the Ambatondrazaka area, east-central Madagascar: Implications for Madagascar-India correlation and Rodinia paleogeography[J]. Precambrian Research, 256: 256-270. doi: 10.1016/j.precamres.2014.11.005

    [51]

    Zhou M F, Yan D P, Kennedy A K, et al. , 2002a. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196: 51-67. doi: 10.1016/S0012-821X(01)00595-7

    [52]

    Zhou M F, Kennedy A K, Sun M, et al. , 2002b. Neoproterozoic Arc‐Related Mafic Intrusions along the Northern Margin of South China: Implications for the Accretion of Rodinia[J]. The Journal of Geology, 110: 611-618. doi: 10.1086/341762

    [53]

    Zhou M F, Yan D P, Wang C L, et al. , 2006a. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): implications for the tectonic setting of the giant Neoproterozoic magmatic eventin South China[J]. Earth and Planetary Science Letters, 248: 286-300. doi: 10.1016/j.jpgl.2006.05.032

    [54]

    Zhou M F, Ma Y X, Yan D P, et al. , 2006b. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 144: 19-38. doi: 10.1016/j.precamres.2005.11.002

    [55]

    朱创业, 1989. 滇东牛头山地区早震旦世沉积相及大地构造环境[J]. 成都地质学院学报, (3): 59-66+130

    Zhu C Y, 1989. The sequences of filling and tectonic evolution of Qiaojia-Shiping basin, Yunnan During early Sinian[J]. Journal of Chengdu Collage of Geology, (3): 59-66+130 (in Chinese with English abstract).

    [56]

    卓皆文, 江新胜, 王剑, 等, 2013. 华南扬子古大陆西缘新元古代康滇裂谷盆地的开启时间与充填样式[J]. 中国科学: 地球科学, 43(12): 1952 − 1963

    Zhuo J W, Jiang X S, Wang J, et al. , 2013. Opening time and filling pattern of the Neoproterozoic Kangdian Rift Basin, western Yangtze Continent, South China. Science China: Earth Sciences, 43(12): 1952 − 1963 (in Chinese with English abstract).

    [57]

    卓皆文, 江新胜, 王剑, 等, 2015. 川西新元古界开建桥组底部沉凝灰岩锆石SHRIMPU-Pb年龄及其地质意义[J]. 矿物岩石, 35(1): 91 − 99

    Zhuo J W, Jiang X S, Wang J, et al. , 2015. Zircon SHRIMP U-Pb age at the bottom of Neoproterozoic Kaijianqiao Formation in western Sichuan, and its geological implication. J Mineral Petrol, 35(1): 91 − 99 (in Chinese with English abstract).

  • 加载中

(7)

计量
  • 文章访问数:  725
  • PDF下载数:  108
  • 施引文献:  0
出版历程
收稿日期:  2021-10-08
修回日期:  2022-04-15
刊出日期:  2023-06-30

目录