成都市浅层地热能资源调查与评价

李强, 张继, 陈思宏, 唐继张, 蒲文斌. 2023. 成都市浅层地热能资源调查与评价. 沉积与特提斯地质, 43(2): 271-282. doi: 10.19826/j.cnki.1009-3850.2023.04004
引用本文: 李强, 张继, 陈思宏, 唐继张, 蒲文斌. 2023. 成都市浅层地热能资源调查与评价. 沉积与特提斯地质, 43(2): 271-282. doi: 10.19826/j.cnki.1009-3850.2023.04004
LI Qiang, ZHANG Ji, CHEN Sihong, TANG Jizhang, PU Wenbin. 2023. Investigation and evaluation of shallow geothermal energy resources in key areas of Chengdu. Sedimentary Geology and Tethyan Geology, 43(2): 271-282. doi: 10.19826/j.cnki.1009-3850.2023.04004
Citation: LI Qiang, ZHANG Ji, CHEN Sihong, TANG Jizhang, PU Wenbin. 2023. Investigation and evaluation of shallow geothermal energy resources in key areas of Chengdu. Sedimentary Geology and Tethyan Geology, 43(2): 271-282. doi: 10.19826/j.cnki.1009-3850.2023.04004

成都市浅层地热能资源调查与评价

  • 基金项目: 2023年四川省重点研发计划 “中深层地热能高效取热关键技术研究”(23ZDYF2589);中国地质调查局项目“成都多要素城市地质调查”(DD20189210)。
详细信息
    作者简介: 李强(1987—),男,高级工程师,主要从事水文地质与工程地质研究工作。E-mail:517412465@qq.com
    通讯作者: 张继(1974—),男,教授级高级工程师,主要从事水文地质与工程地质研究工作。E-mail:276582940@qq.com
  • 中图分类号: P314

Investigation and evaluation of shallow geothermal energy resources in key areas of Chengdu

More Information
  • 在“双碳”目标背景下,浅层地热能作为节能环保能源,其勘探开发及利用力度亟须加强。基于现场热响应测试、抽水及回灌试验以及岩土体热物性测试,获取水文地质和热物性参数,采用层次分析法开展成都市浅层地热能适宜性评价,估算浅层地热能热容量、换热功率、资源潜力及环境效益。实测成都市研究区200 m以浅平均地层温度在18.59~19.76℃,地层平均导热率介于1.89~3.12 W/m·℃。成都市浅层地热能适宜采用地下水和地埋管地源热泵方式开发,地下水地源热泵方式适宜区面积占16.36%,较适宜区面积占19.72%,不适宜面积占63.92%;除原芒硝矿采空区域外,研究区均适宜及较适宜地埋管地源热泵方式开发。浅层地热能夏季制冷换热功率总量为1.19×107 kW,可制冷面积达1.98×108 m2;冬季供暖换热功率总量为1.48×107 kW,可供暖面积达1.57×108 m2。据估算,成都市开发浅层地热能每年可节省标准煤169万吨,减排各类废气污染约425万吨,节能减排效果显著。

  • 加载中
  • 图 1  研究区水文地质简图

    Figure 1. 

    图 2  表层地下水温度随季节变化曲线

    Figure 2. 

    图 3  X121热响应试验孔垂向温度变化曲线

    Figure 3. 

    图 4  现场热响应试验导热系数分区图

    Figure 4. 

    图 5  适宜性分区评价模型结构图

    Figure 5. 

    图 6  成都市浅层地热能资源开发利用适宜性分区图

    Figure 6. 

    图 7  成都市地下水和地埋管地源热泵换热功率总量对比图

    Figure 7. 

    图 8  成都市地下水和地埋管地源热泵系统换热功率总量对比图

    Figure 8. 

    表 1  研究区第四系地层平面分布情况表

    Table 1.  The plane distribution of Quaternary strata in the study area

    地层时代及代号面积(km2研究区比例(%)分布位置
    第四系全新统冲积层(Q4al121.3510.2江安河以及府河沿河两侧
    全新统冲洪积层(Q4al-pl42.163.6鹿溪河、西江河及其支流沿河两侧
    上更新统冰水-流水堆积层(Q3fgl-al522.1844.0平原区河间地块
    上更新统成都粘土(Q3eol317.3326.8成都东部台地之上
    中、下更新统冰水-流水堆积层(Q1+2fgl-al38.323.2南部台地及东部台地丘顶
    基岩残坡积层144.6712.2苏码头背斜附近大面铺、新兴镇一带
    下载: 导出CSV

    表 2  现场热响应试验岩土热物性参数表

    Table 2.  Geothermal physical parameters of field thermal response test

    序号试验编号地质特征平均原始地温(℃)导热系数(W/m·℃)
    1ZK16西部成都平原第四系砂卵石地层18.951.89
    2ZK1819.622.27
    3ZK1918.592.01
    4ZK2019.52.7
    5ZK2120.22.15
    6ZK2219.92.95
    7X818.862.14
    8X918.943.41
    9X11118.92.13
    10ZK01东部台地区,上部10~20 m粘土地区,
    下部为红层砂泥岩地层
    19.262.27
    11ZK0218.652.53
    12ZK0319.582.34
    13ZK1519.182.04
    14ZK1719.152.75
    15ZK2318.72.72
    16ZK2419.222.72
    17ZK2519.152.76
    18ZK2619.353.06
    19X118.472.45
    20X718.823.52
    21X11218.792.62
    22ZK10简州新城丘陵区以砂泥岩互层为主地层19.732.23
    23ZK1120.121.49
    24ZK1219.761.88
    25ZK1319.681.3
    26ZK1419.451.56
    27ZK04淮州新城丘陵区以厚层砂岩为主地层18.83.35
    28ZK0518.712.71
    29ZK0618.822.37
    30ZK0719.253.14
    31ZK0819.692.44
    32ZK0919.713.3
    下载: 导出CSV

    表 3  抽水及回灌试验统计表

    Table 3.  Statistical table of pumping and recharge test

    回灌试验编号含水层厚度(m)平均影响半径(m)单位涌水量(L/s·m)回灌量(L/s·m)灌采比
    H4112.589.002.3881.9780.829
    H4212.599.682.3602.0000.847
    H332884.183.8833.5440.913
    H342887.684.0673.7520.923
    H468.578.091.6091.2170.757
    H3714.1109.492.6432.0930.792
    H3815.2139.042.5772.5450.988
    H0519.97149.452.1581.0040.465
    H3224.588.743.8142.7050.709
    H3124.583.823.4442.5370.737
    H3025.1132.903.1872.8330.889
    H0928.06235.835.7205.3620.937
    H0317.7175.402.4942.3750.952
    H0828.06237.246.5256.2440.957
    H2724.5131.803.2743.1620.966
    H2824134.903.1693.1050.980
    H2925.1136.303.2303.1840.986
    H0218122.602.5302.5090.992
    H4411.891.162.2680.7450.328
    H4311.499.931.9760.6960.352
    H471570.432.1970.8390.382
    H481576.102.2170.8480.383
    H459.897.881.8430.7760.421
    下载: 导出CSV

    表 4  岩土体热物性参数平均值表

    Table 4.  Average value of physical properties and thermophysical parameters of rock mass

    地层时代岩性热物性参数
    热导率(W/m·℃)热扩散系数(m2/s)比热容(J/kg·℃)
    第四系粘土0.980.30×10−61724.40
    粉质粘土1.070.85×10−6410.20
    粉土1.190.83×10−6724.37
    细砂0.690.66×10−6448.52
    砂砾卵石1.230.79×10−6231.59
    基岩泥岩1.790.71×10−61068.71
    粉砂质泥岩1.350.64×10−6878.88
    含钙芒硝粉砂质泥岩1.530.67×10−6839.57
    砂质泥岩1.130.50×10−6827.26
    砂岩1.560.67×10−6802.85
    细砂岩1.600.92×10−6758.99
    泥质砂岩1.330.54×10−6939.38
    泥质粉砂岩1.250.57×10−6823.88
    下载: 导出CSV

    表 5  各因素综合权重表

    Table 5.  Comprehensive weight table of each factor

    地下水地源热泵系统地埋管地源热泵系统
    因素综合权重因素综合权重
    含水层厚度0.0599卵石层厚度0.1735
    含水层出水能力0.2764地下水位埋深0.0546
    含水层回灌能力0.2887地下水水质0.0688
    地下水位埋深0.0795导热系数0.2158
    含水层渗透系数0.1590岩土体比热容0.2158
    地下水水质0.0683初始地温0.1079
    地下水硬度0.0682埋管深度0.0545
    钻进条件0.1089
    下载: 导出CSV

    表 6  成都市浅层地热能热容量计算结果汇总表

    Table 6.  Summary of calculation results of shallow geothermal energy heat capacity in Chengdu

    评价区域包气带热容量(kJ/℃)饱水带热容量(kJ/℃)总热量(kJ/℃)
    地下水地源热泵适宜区和较适宜区1.06×10136.54×10146.65×1014
    地埋管地源热泵适宜区和较适宜区1.04×10136.33×10146.43×1014
    下载: 导出CSV

    表 7  成都市浅层地温能资源利用节能减排量分析表

    Table 7.  Analysis of energy conservation and emission reduction of shallow geothermal energy resource utilization in Chengdu

    项目CO2SO2NOx粉尘灰渣
    系数2.3861.7%0.6%0.8%0.1%
    总量/(kg/a)1.69×1094.03×1092.87×1071.01×1071.35×107
    下载: 导出CSV
  • [1]

    Carlino S, Somma R, Troiano A, et al. , 2014. The geothermal system of Ischia Island (southern Italy): Critical review and sustainability analysis of geothermal resource for electricity generation [J]. Renewable Energy, 62: 177-196. doi: 10.1016/j.renene.2013.06.052

    [2]

    Galgaro A, Di Sipio E, Teza G, et al. , 2015. Empirical modeling of maps of geo-exchange potential for shallow geothermal energy at regional scale [J]. Geothermics, 57: 173-184. doi: 10.1016/j.geothermics.2015.06.017

    [3]

    Haehnlein S, Bayer P, Blum P, 2010. International legal status of the use of shallow geothermal energy [J]. Renewable and Sustainable Energy Reviews, 14(9): 2611-2625. doi: 10.1016/j.rser.2010.07.069

    [4]

    Song C, Li Y, Rajeh T, et al. , 2021. Application and development of ground source heat pump technology in China [J]. Protection and Control of Modern Power Systems, 6(1): 17. doi: 10.1186/s41601-021-00195-x

    [5]

    Shrestha G, Yoshioka M, Fujii H, et al. , 2020. Evaluation of suitable areas to introduce a closed-loop ground source heat pump system in the case of a standard Japanese detached residence [J]. Energies, 13(17): 1-15.

    [6]

    郭镜, 夏时斌, 2022. 川东褶皱带地热系统的空间载体——相互连通的断裂系统: 以四川广安牟家镇地热井为例[J]. 沉积与特提斯地质, 42(4): 642-652

    Guo J, Xia S B, 2022. Spatial carrier of geothermal system in eastern Sichuan fold zone——interconnected fault system: A case study of geothermal well in Moujia Town, Guang’an, Sichuan [J]. Sedimentary Geology and Tethyan Geology, 42(4): 642-652.

    [7]

    韩再生, 冉伟彦, 佟红兵, 等, 2007. 浅层地热能勘查评价[J]. 中国地质, 34(6): 1115-1121

    Han Z S, Ran W Y, Tong H B, et al. , 2007. Shallow geothermal energy exploration and evaluation [J]. China Geology, 34(6): 1115-1121.

    [8]

    韩丽莎, 2006. 成都温江金马地区环境地球化学异常成因机理研究[D]. 成都: 成都理工大学.

    Han L S, 2006. Study on the genetic mechanism of environmental geochemical anomalies in Jinma area, Wenjiang, Chengdu [D]. Chengdu: Chengdu University of Technology(in Chinese).

    [9]

    何雪冰, 丁勇, 刘宪英, 2004. 地源热泵埋管换热器传热模型及其应用[J]. 重庆建筑大学学报, (2): 76-80

    He X B, Ding Y, Liu X Y, 2004. Heat transfer model of ground source heat pump buried tube heat exchanger and its application [J]. Journal of Chongqing Jianzhu University, (2): 76-80.

    [10]

    黄露玉, 梁金龙, 刘斌, 等, 2022. 基于组合赋权法的广安市地源热泵适宜性分区[J]. 科学技术与工程, (013): 022. .

    Huang L Y, Liang J L, Liu B, et al., 2022. Suitability zoning of ground source heat pump in Guang’an City based on combination weighting method [J]. Science Technology and Engineering, 22(13): 5116 − 5124(in Chinese with English abstract)

    [11]

    金婧, 席文娟, 陈宇飞, 等, 2012. 基于AHP的浅层地热能适宜性分区评价[J]. 水资源与水工程学报, 23(3): 91-93

    Jin J, Xi W J, Chen Y F, et al. , 2012. Evaluation of shallow geothermal energy suitability zoning based on AHP [J]. Journal of Water Resources and Hydraulic Engineering, 23(3): 91-93.

    [12]

    蔺文静, 刘志明, 王婉丽, 等, 2013. 中国地热资源及其潜力评估[J]. 中国地质, 040(001): 312-321

    Lin W J, Liu Z M, Wang W L, et al. , 2013. The assessment of geothermal resources potential of China [J]. China Geology, 040(001): 312-321.

    [13]

    刘宪英, 王勇, 胡鸣明, 等, 1999. 地源热泵地下垂直埋管换热器的试验研究[J]. 重庆建筑大学学报, (5): 21-26

    Liu X Y, Wang Y, Hu M M, et al. , 1999. Experimental study on underground vertical ground heat exchanger of ground source heat pump [J]. Journal of Chongqing Jianzhu University, (5): 21-26.

    [14]

    刘宪英, 张素云, 胡鸣明, 等, 2000. 地热源热泵冬夏暖冷联供试验研究[J]. 水利电力施工机械, (1): 14-22

    Liu X Y, Zhang S Y, Hu M M, et al. , 2000. Geothermal source heat pump combined winter and summer heating and cooling [J]. Water conservancy and power construction machinery, (1): 14-22.

    [15]

    龙西亭, 袁瑞强, 皮建高, 等, 2016. 长沙浅层地热能资源调查与评价[J]. 自然资源学报, (1): 14

    Long X T, Yuan R Q, Pi J G et al. , 2016. Survey and Evaluation of Shallow Geothermal Energy in Changsha [J]. Journal of Natural Resources, (1): 14.

    [16]

    卢玮, 尚永升, 申云飞, 2022. 浅层地热能地下换热系统适宜性评价与优化设计——以郑州市浅层地热能示范工程为例[J]. 探矿工程-岩土钻掘工程, 49(3): 146 − 153

    Lu W, Shang Y S, Shen Y F, 2022. Suitability evaluation and optimization design of the shallow geothermal energy underground heat exchange system——Taking Zhengzhou shallow geothermal energy demonstration project as an example [J]. Drilling Engineering, 49(3): 146 − 153(in Chinese with English abstract).

    [17]

    罗改, 王全伟, 陈宇龙, 等, 2021. 四川省大地构造单元划分及其基本特征[J]. 沉积与特提斯地质, 41(4): 633-647

    Luo G, Wang Q W, Chen Y L, et al. , 2021. Division and basic characteristics of tectonic units in Sichuan Province [J]. Sedimentary Geology and Tethyan Geology, 41(4): 633-647.

    [18]

    宋帅良, 2018. 菏泽市浅层地温能开发利用适宜性研究[D]. 北京: 中国地质大学.

    Song S L, 2018. Study on the suitability of shallow geothermal energy development and utilization in Heze City [D]. Beijing: China University of Geosciences (in Chinese).

    [19]

    宋小庆, 2018. 贵州主要城市浅层地热能利用潜力评价[J]. 中国岩溶, 037(001): 9-16

    Song X Q, 2018. Evaluation on utilization potential of shallow geothermal energy in major cities of Guizhou [J]. Karst in China, 037(001): 9-16.

    [20]

    唐永香, 2014. 滨海新区浅层地热能赋存规律及其开发利用对策研究[D]. 北京: 中国地质大学.

    Tang Y X, 2014. Study on the occurrence law and development and utilization countermeasures of shallow geothermal energy in Binhai New Area [D]. Beijing: China University of Geosciences(in Chinese).

    [21]

    王贵玲, 刘彦广, 朱喜, 等, 2020. 中国地热资源现状及发展趋势[J]. 地学前缘, 27(1): 1 − 9.

    Wang G L, Liu Y G, Zhu X, et al. , 2020. The status and development trend of geothermal resources in China [J]. Earth Science Frontiers, 27(1): 1 − 9

    [22]

    王贵玲, 张薇, 梁继运, 等, 2017. 中国地热资源潜力评价[J]. 地球学报, 38(4): 12

    Wang G L, Zhang W, Liang J Y, et al. , 2017. Evaluation of Geothermal Resources Potential in China [J]. Earth Journal, 38(4): 12.

    [23]

    王楠, 曹剑峰, 赵继昌, 等, 2012. 长春市区浅层地温能开发利用方式适宜性分区评价[J]. 吉林大学学报: 地球科学版, 42(4): 6

    Wang N, Cao J F, Zhao J C, et al. , 2012. Suitability zoning evaluation of shallow geothermal energy development and utilization in Changchun City [J]. Journal of Jilin University: Earth Science Edition, 42(4): 6.

    [24]

    魏林森, 丁宏伟, 王婷, 等, 2016. 基于层次分析法的浅层地温能适宜性评价分析——以兰州市中心城区为例[J]. 地球科学前沿, 6(5): 412-421

    Wei L S, Ding H W, Wang T, et al. , 2016. Analysis of suitability evaluation of shallow geothermal energy based on analytic hierarchy process-a case study of the central urban area of Lanzhou [J]. Front of Earth Science, 6 (5): 412-421.

    [25]

    许苗娟, 姜媛, 谢振华, 等, 2009. 基于层次分析法的北京市平原区水源热泵适宜性分区研究[J]. 城市地质, 4(1): 18-22

    Xu M J, Jiang Y, Xie Z H, et al. , 2009. Study on suitability zoning of water source heat pump in Beijing plain area based on analytic hierarchy process [J]. Urban geology, 4(1): 18-22.

    [26]

    张承斌, 2022. 基于层次分析法-模糊综合评价模型的浅层地热能适宜性评价——以山东省昌乐县为例[J]. 中国地质调查, 9(2): 91-99 doi: 10.19388/j.zgdzdc.2022.02.09

    Zhang C B, 2022. Suitability evaluation of shallow geothermal energy based on analytic hierarchy process and fuzzy comprehensive evaluation: A case study of Changle County in Shandong Province [J]. Geological Survey of China, 9(2): 91-99. doi: 10.19388/j.zgdzdc.2022.02.09

    [27]

    张甫仁, 朱方圆, 彭清元, 等, 2013. 重庆主城区浅层地温能适宜性分区评价[J]. 重庆交通大学学报(自然科学版), 32(4): 647-651

    Zhang F R, Zhu F Y, Peng Q Y, et al. , 2013. Evaluation of suitability zoning of shallow geothermal energy in the main urban area of Chongqing [J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 32(4): 647-651.

    [28]

    张甫仁, 彭清元, 朱方圆, 等, 2013. 重庆主城区浅层地温能资源量评价研究[J]. 中国地质, 40(3): 974-980 doi: 10.3969/j.issn.1000-3657.2013.03.027

    Zhang F R, Peng Q Y, Zhu F Y, et al. , 2013. Evaluation of shallow geothermal energy resources in the main urban area of Chongqing [J]. China Geology, 40(3): 974-980. doi: 10.3969/j.issn.1000-3657.2013.03.027

    [29]

    中华人民共和国国土资源部, 2009. 浅层地热能勘察评价规范DZ/T0225—2009[S]. 北京: 中国标准出版社.

    Ministry of Land and Resources of the People 's Republic of China, 2009. DZ / T0225−2009 [S]. Beijing: China Standard Press.

    [30]

    中华人民共和国国家质量监督检验检疫总局, 2010. 地热资源地质勘查规范GB/T11615—2010[S]. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People 's Republic of China, 2010. Geothermal Resources Geological Exploration Specification GB / T11615−2010 [S]. Beijing: China Standard Press.

  • 加载中

(8)

(7)

计量
  • 文章访问数:  1162
  • PDF下载数:  127
  • 施引文献:  0
出版历程
收稿日期:  2022-12-31
修回日期:  2023-03-20
录用日期:  2023-04-12
刊出日期:  2023-06-30

目录