中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Sun Xiu-bo, Guo Chang-lai, Zhang Jing, Sun Jia-quan, Cui Jian, Liu Mao-hua. 2023. Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis. Journal of Groundwater Science and Engineering, 11(1): 37-46. doi: 10.26599/JGSE.2023.9280004
Citation: Sun Xiu-bo, Guo Chang-lai, Zhang Jing, Sun Jia-quan, Cui Jian, Liu Mao-hua. 2023. Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis. Journal of Groundwater Science and Engineering, 11(1): 37-46. doi: 10.26599/JGSE.2023.9280004

Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Table 1.  Evaluation of nitrate in groundwater

    Index itemSample numberClass Ⅲ standard value (mg/L)Exceeding standard pointsExceeding standard rate (%)Maximum concentration
    (mg/L)
    May nitrate (calculated as nitrogen)20201365.0087.97
    June nitrate (calculated as nitrogen)20201365.0096.46
    July nitrate (calculated as nitrogen)20201260.0075.63
    August nitrate (calculated as nitrogen)20201365.0096.59
    (May-August) Nitrate (calculated as nitrogen)80205163.7596.59
    下载: 导出CSV

    Table 2.  Statistics of groundwater nitrate parameters (mg/L)

    ProjectStageAverage valueStandard deviationMinimum valueMaximum valueCoefficient of variation (%)
    Nitrate in groundwaterMay35.9825.110.6187.9769.80
    Nitrate in groundwaterJune33.7228.324.6896.4683.98
    Nitrate in groundwaterJuly30.7320.505.7475.6366.71
    Nitrate in groundwaterAugust38.7627.0110.1596.5969.70
    下载: 导出CSV

    Table 3.  Statistics of soil nitrogen parameter characteristics (mg/L)

    ProjectStageAverage valueStandard deviationMinimum valueMaximum valueCoefficient of variation (%)
    Ammonium nitrogen (0–20 cm)May17.1617.263.2676.95100.57
    June19.1219.122.9974.36100.01
    July14.5729.701.23133.04203.81
    August0.740.230.331.3431.03
    Nitrate nitrogen (0–20 cm)May3.330.782.436.1623.46
    June1.640.361.132.3422.01
    July0.570.700.203.36123.72
    August4.043.740.6017.2192.68
    Ammonium nitrogen (20–40 cm)May19.9643.762.20190.04219.26
    June18.3134.622.25156.32189.12
    July24.0729.050.70107.54120.69
    August0.550.180.300.9532.14
    Nitrate nitrogen (20–40 cm)May3.150.552.414.7217.60
    June1.460.281.122.2219.30
    July0.410.170.220.8741.45
    August7.8518.600.5986.11236.91
    Ammonium nitrogen (40–60 cm)May16.0932.011.06130.70198.91
    June13.5818.412.0178.82135.54
    July18.3122.900.7893.85125.11
    August0.610.250.291.1240.79
    Nitrate nitrogen (40–60 cm)May3.350.772.515.3522.91
    June1.380.500.333.1136.22
    July0.420.120.210.7027.61
    August7.6411.780.7753.02154.23
    下载: 导出CSV

    Table 4.  NO3 correlation analysis with groundwater chemical factors

    Correlation coefficientNO3Ca2+Mg2+ClTDSPermanent hardnessNO2−NH4+
    NO31.000.850.720.730.890.940.05−0.01
    Ca2+0.851.000.560.880.940.940.060.04
    Mg2+0.720.561.000.480.740.730.110.01
    Cl0.730.880.481.000.840.840.080.04
    TDS0.890.940.740.841.000.960.090.04
    Permanent hardness0.940.940.730.840.961.000.070.03
    NO2−0.050.060.110.080.090.071.000.89
    NH4+−0.010.040.010.040.040.030.891.00
    下载: 导出CSV

    Table 5.  Correlation analysis of nitrate nitrogen in groundwater and soil

    Nitrate nitrogen in groundwaterSoil nitrogenOptimal modelCoefficient of goodness of fit (R2)SignificanceSignificant degree
    July nitrate nitrogenJuly nitrate nitrogenthree times0.6690.008More relevant
    August nitrate nitrogenJuly nitrate nitrogenthree times0.6660.003More relevant
    August nitrate nitrogenAugust ammonia nitrogencompound0.7930More relevant
    下载: 导出CSV

    Table 6.  Correlation analysis of nitrate in groundwater and soil

    ProjectStageSample raw dataConverted dataModel nameGold value (C0)Base value (C0+C)Nugget Coefficient (C0/C0+C)Variable a/m
    skewnesskurtosisskewnesskurtosis

    Nitrate nitrogen in groundwater

    May 0.423 2 2.116 9 0.4232 2.116 9 Stable function 66.3286 1444.1306 0.0459 23 586
    June 1.030 6 3.794 4 −0.5812 2.845 6 Index function 0.0543 0.953 0 0.0570 23 586
    July 0.658 1 2.454 9 −0.3688 2.154 8 Sphere function 0.0837 1.044 2 0.0802 21 136
    August 0.800 6 2.392 9 0.092 0 1.736 1 Index function 0.0873 1.162 2 0.0751 23 586

    Soil nitrate nitrogen

    May 0.956 0 3.714 7 0.605 4 3.163 0 Sphere function 0.0179 0.018 0 0.9944 23 625
    June 1.155 3 4.439 9 0.575 9 3.742 4 Index function 0.0308 0.030 9 0.9968 23 625
    July 2.858 6 11.3000 1.434 2 5.324 5 Sphere function 0.0055 0.053 3 0.1032 6 199
    August 3.549 7 14.9750 0.521 5 3.684 5 Index function 0.9192 0.919 3 0.9999 23 625

    Soil ammonium nitrogen

    May 3.062 1 11.5330 1.009 9 3.906 2 Index function 1.0533 1.053 4 0.9999 23 625
    June 2.733 4 10.0600 0.946 1 3.471 5 Index function 0.7896 0.790 6 0.9987 23 625
    July 2.022 7 6.313 4 −0.2278 2.338 5 Index function 1.0712 1.865 8 0.5741 16 997
    August 0.285 5 2.212 9 0.285 5 2.212 9

    Exponential function

    0.0607 0.357 4 0.1698 23 625
    下载: 导出CSV
  • Abdelhakim L, Abdellah EH, Karima B. 2020. Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco. Journal of Groundwater Science and Engineering, 8(02): 143−157. DOI:10.19637/j.cnki.2305-7068.2020.02.006.

    Cui JS, Liu SF, Gao YK, et al. 2022. Assessment of groundwater nitrate content under land use changes in Zhanjiang City. Environmental Chemistry, 41(7): 1−12. (in Chinese) DOI:10.7524/j.issn.0254-6108.2021071101.

    Dai MX, Shi RG, Zhao YJ, et al. 2007. Spatial variability of soil cadmium in Huxian agricultural area, Sichuan Province. Journal of Agro-Environment Science, (3): 1093−1099. (in Chinese) DOI:10.3321/j.issn:1672-2043.2007.03.058.

    Han YP, Chai Y, Liu ZP, et al. 2018. Temporal and spatial distribution characteristics of nitrogen content in the groundwater of People’s Victory Canal irrigation district. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 39(01): 25−30, 96. (in Chinese) DOI:10.3969/j.issn.1002-5634.2018.

    Huang S. 2019. GIS-based simulation and analysis of peak nitrate lag time in global vadose zone. Jilin University: 2019.000294. (in Chinese) DOI:10.27162/d.cnki.gjlin.

    Li JY, Li Y, Huang ZG, et al. 2022. Fertilization in intensive sugarcane planting areas significantly increased riverine nitrate pollution: Evidenced by nitrogen and oxygen isotopes in a watershed. Journal of Plant Nutrition and Fertilizers, 28(1): 104−113. (in Chinese) DOI:10.11674/zwyf.2021513.

    Li Y, Kang FX, Zou AD. 2019. Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit. Journal of Groundwater Science and Engineering, (02): 145−154. DOI:10.19637/j.cnki.2305-7068.2019.02.005.

    Liu MH, Luo SQ, Du XSH. 2021. Exploring equity in healthcare services: Spatial accessibility changes during subway expansion. ISPRS. Geo-Inf, 10: 439. DOI:10.3390/ijgi10070439.

    Ma BQ, Wang X, Tang C. 2021. Application of various environmental tracers in identifying nitrate sources of groundwater. Environmental Science and Technology, 34(06): 37−40, 44. (in Chinese) DOI:10.19824/j.cnki.cn32-1786/x.2021.0084.

    Ma CY, Wang JL, CHEN Z, et al. 2019. Spatial distribution of soil moisture estimated using thermal vegetation drought indices. Journal of Irrigation & Drainage, 38(3): 28−34. (in Chinese) DOI:10.13522/j.cnki.ggps.20170036.

    Michener R, Lajtha K. 2007. Stable isotopes in ecology and environmental science. Oxford, UK: Blackwell Publishing Ltd.

    Nixdorf E, Sun YY, Lin M, et al. 2017. Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin. Science of the Total Environment, 605-606: 598−609. DOI:10.1016/j.scitotenv.2017.06.126.

    Pati S, Dash Mihir K, Mukherjee CK, et al. 2014. Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam, India. Environmental Monitoring and Assessment, 186(10): 6385−6402. DOI:10.1007/s10661-014-3862-y.

    Sacchi E, Acutis M, Bartoli M, et al. 2013. Origin and fate of nitrates in groundwater from the central Po plain: Insights from isotopic investigations. Applied Geochemistry, (34): 164−180. DOI:10.1016/j.apgeochem.2013.03.008.

    Sun XB, Cui J, Dai YJ. 2022. Research on the evaluation of land resources carrying capacity in Jinzhou area. Geological Bulletin of China, 41(08): 1487−1493. (in Chinese) DOI:10.12097/j.issn.1671-2552.2022.08.014.

    Wang YN, Xie HQ, Li FL, et al. 2020. Spatial variation analysis of intensive and economical utilization of urban land in China using ArcGIS. Geomatics & Spatial Information Technology, 43(12): 32−34, 37. (in Chinese) DOI:10.3969/j.issn.1672-5867.2020.12.008.

    Yuan HY, Yang SQ, Zhang WF, et al. 2022. Temporal and spatial variation characteristics and drivving factors of nitrogen of shallow groundwater in Hetao irrigation district. Environmental Science, 043(004): 1−15. (in Chinese) DOI:10.13227/j.hjkx.202107187.

    Zhang Y, Li FD, Zhang QY, et al. 2014. Tracing nitrate pollution sources and transformation in surface-and ground-waters using environmental isotopes. Science of the Total Environment, 490: 213−222. DOI:10.1016/j.scitotenv.2014.05.004.

    Zhang Z, Lu R, Wu SY, et al. 2022. Heavy metal pollution and health risk assessment of mine soil in Yangtze River economic belt. Huan Jing Ke Xue, 43(7): 3763−3772. DOI:10.13227/J.HJKX.202109102.

  • 加载中

(4)

(6)

计量
  • 文章访问数:  937
  • PDF下载数:  15
  • 施引文献:  0
出版历程
收稿日期:  2022-04-12
录用日期:  2022-12-26
网络出版日期:  2023-03-20
刊出日期:  2023-03-15

目录