中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Malik Yousef Al-Abed Allah, Mohammad Omar Abu Abbas. 2023. Experimental investigation of the impact of water depth, inlet water temperature, and fins on the productivity of a Pyramid Solar Still. Journal of Groundwater Science and Engineering, 11(2): 183-190. doi: 10.26599/JGSE.2023.9280016
Citation: Malik Yousef Al-Abed Allah, Mohammad Omar Abu Abbas. 2023. Experimental investigation of the impact of water depth, inlet water temperature, and fins on the productivity of a Pyramid Solar Still. Journal of Groundwater Science and Engineering, 11(2): 183-190. doi: 10.26599/JGSE.2023.9280016

Experimental investigation of the impact of water depth, inlet water temperature, and fins on the productivity of a Pyramid Solar Still

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

  • Abdallah S, Abu-Khader MM, Badran O. 2009. Effect of various absorbing materials on the thermal performance of solar stills. Desalination, 242(1-3): 128−137. DOI:10.1016/j.desal.2008.03.036.

    Agrawal A, Rana RS, Srivastava PK. 2017. Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: Experimental and theoretical comparison. Resource-Efficient Technologies, 3(4): 466−482. DOI:10.1016/j.reffit.2017.05.003.

    Ahmed ZAG. 2012. Enhancing the solar still using immersion type water heater productivity and the effect of external cooling fan in winter. Applied Solar Energy, 48(3): 193−200. DOI:10.3103/S0003701X12030048.

    Arunkumar T, Vinothkumar K, Ahsan A, et al. 2012. Experimental study on various solar still designs. ISRN Renewable Energy.

    Aybar HS. 2007. A review of desalination by solar still. Solar desalination for the 21st century. Springer, Dordrecht: 2007.207−214. DOI:10.1007/978-1-4020-5508-9_15.

    Badran AA, Al-Hallaq IA, Salman IAE, et al. 2005. A solar still augmented with a flat-plate collector. Desalination, 172(3): 227−234. DOI:10.1016/j.desal.2004.06.203.

    Badran OO, Al-Tahaineh HA. 2005. The effect of coupling a flat-plate collector on the solar still productivity. Desalination, 183(1-3): 137−142. DOI:10.1016/j.desal.2005.02.046.

    Human Development Report. 2016. Human Development Report Human Development for Everyone. 2016.

    Jani HK, Modi KV. 2019. Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins. Solar Energy, 179: 186−194. DOI:10.1016/j.solener.2018.12.054.

    Kabeel AE, Sharshir SW, Abdelaziz GB, et al. 2019. Improving performance of tubular solar still by controlling the water depth and cover cooling. Journal of Cleaner Production.

    Kabeel AE, El-Samadony YAF, Wael M, et al. 2018. Comparative study on the solar still performance utilizing different PCM. Desalination, 432: 89−96. DOI:10.1016/j.desal.2018.01.016.

    Khechekhouche A, Benhaoua B, Manokar M, et al. 2019. Sand dunes effect on the productivity of a single slope solar distiller. Heat and Mass Transfer, 1-10.

    Kulandaivel KM, Karuppiah S. 2014. Single basin double slope solar still-year round performance prediction for local climatic conditions at southern India. Thermal Science, 18(2): 429−438.

    Manokar AM, Taamneh Y, Kabeel AE, et al. 2019. Effect of water depth and insulation on the productivity of an acrylic pyramid solar still – An experimental study. Groundwater for Sustainable Development, 100319.

    Nayi KH, Modi KV. 2018. Pyramid solar still: A comprehensive review. Renewable and Sustainable Energy Reviews, 81: 136−148. DOI:10.1016/j.rser.2017.07.004.

    Phadatare MK, Verma SK. 2007. Influence of water depth on internal heat and mass transfer in a plastic solar still. Desalination, 217(1-3): 267−275. DOI:10.1016/j.desal.2007.03.006.

    Rajamanickam MR, Ragupathy A. 2012. Influence of water depth on internal heat and mass transfer in a double slope solar still. Energy Procedia, 14: 1701−1708. DOI:10.1016/j.egypro.2011.12.1155.

    Rubio-Cerda E, Porta-Gándara MA, Fetnandez-Zayas JL, et al. 2002. Thermal performance of the condensing covers in a triangular solar still. Renewable Energy, 27(2): 301−308. DOI:10.1016/S0960-1481(01)00196-3.

    Taamneh Y, Taamneh MM. 2012. Performance of pyramid-shaped solar still: Experimental study. Desalination: 65−68. DOI:10.1016/j.desal.2012.01.026.

    Taamneh YM, Allah MAA. 2020. Experimental study on pyramid solar still utilizing different types of nano-particles. Desalination and Water Treatment, 198: 31−40. DOI:10.5004/dwt.2020.26013.

    Voropoulos K, Mathioulakis E, Belessiotis V. 2003. Experimental investigation of the behavior of a solar still coupled with hot water storage tank. Desalination, 156(1-3): 315−322. DOI:10.1016/S0011-9164(03)00362-X.

    Voropoulos K, Mathioulakis E, Belessiotis V. 2001. Experimental investigation of a solar still coupled with solar collectors. Desalination, 138(1-3): 103−110. DOI:10.1016/S0011-9164(01)00251-X.

    Velmurugana V, Deenadayalan CK, Vinod H, et al. 2008. Desalination of effluent using fin type solar still. Energy, 33(11): 1719−1727. DOI:10.1016/j.energy.2008.07.001.

    Velmurugan V, Gopalakrishnan M, Raghu R, et al. 2008. Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10): 2602−2608. DOI:10.1016/j.enconman.2008.05.010.

  • 加载中

(9)

计量
  • 文章访问数:  1030
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2022-06-15
录用日期:  2023-04-03
网络出版日期:  2023-06-15
刊出日期:  2023-06-30

目录