浮选微泡调控及其作用机制的研究进展

梁艳男, 王海楠, 周若谦, 张海军. 浮选微泡调控及其作用机制的研究进展[J]. 矿产综合利用, 2022, 43(2): 158-166. doi: 10.3969/j.issn.1000-6532.2022.02.029
引用本文: 梁艳男, 王海楠, 周若谦, 张海军. 浮选微泡调控及其作用机制的研究进展[J]. 矿产综合利用, 2022, 43(2): 158-166. doi: 10.3969/j.issn.1000-6532.2022.02.029
Liang Yannan, Wang Hainan, Zhou Ruoqian, Zhang Haijun. Investigation Advances on Regulation and Mechanism of Microbubbles in Flotation[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(2): 158-166. doi: 10.3969/j.issn.1000-6532.2022.02.029
Citation: Liang Yannan, Wang Hainan, Zhou Ruoqian, Zhang Haijun. Investigation Advances on Regulation and Mechanism of Microbubbles in Flotation[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(2): 158-166. doi: 10.3969/j.issn.1000-6532.2022.02.029

浮选微泡调控及其作用机制的研究进展

  • 基金项目: 国家自然科学基金优秀青年科学基金(51722405);国家自然科学基金面上项目(51974310); 江苏省研究生科研与实践创新计划项目(KYCX21_2402)
详细信息
    作者简介: 梁艳男(1996-),女,在读硕士研究生
    通讯作者: 张海军(1981-),男,研究员,博士生导师,主要从事矿物分离流体界面力学、混合分离过程强化技术与装备、工业固废资源化利用方面的科研工作,E-mail:zhjcumt@163.com
  • 中图分类号: TD94

Investigation Advances on Regulation and Mechanism of Microbubbles in Flotation

More Information
  • 气泡作为浮选过程的载体,其特征对浮选效率有显著影响,气泡特征调控是强化浮选过程的有效手段,近年来,微泡浮选引起广泛的关注。本文从微泡生成、气泡特征调控及矿化机制等方面总结了微泡浮选的研究进展。介绍了射流发泡、微孔介质发泡、溶气发泡、超声发泡和电解发泡的发泡原理及应用。从表面活性剂、电解质和能量输入角度分析了微泡直径的调控机制,并基于气泡形态和上升速度方面探讨了微泡运动特性的调控机制;从颗粒与气泡的碰撞、粘附和脱附过程角度全面分析了微泡与颗粒的作用机理。最后对浮选微泡调控及其作用机制的未来发展趋势进行展望。

  • 加载中
  • 图 1  射流微泡发生器发泡[5]

    Figure 1. 

    图 2  微孔介质发泡示意图[8]

    Figure 2. 

  • [1]

    Zongfu Dai, Daniel Fornasiero, John Ralston. Particle Bubble Collision Models: A Review[J]. Advances in Colloid and Interface Science, 2000, 85:231-256. doi: 10.1016/S0001-8686(99)00030-5

    [2]

    郭晟. 微泡生成机理及微泡发生器的优化设计研究[D]. 昆明: 昆明理工大学, 2006.

    GUO S. Research on microbubble generation mechanism and optimized design of microbubble generator[D]. Kunming: Kunming University of Science and Technology, 2016.

    [3]

    朱宏政, 王海艳, 王海楠, 等. 机械搅拌式浮选装置中气泡粒径分布规律[J]. 煤炭学报, 2018, 43(4):1140-1145.

    ZHU H Z, WANG H Y, WANG H N, et al. Bubble size distribution in a mechanical flotation device[J]. Journal of China Coal Society, 2018, 43(4):1140-1145.

    [4]

    李小兵, 郭杰, 周晓华, 等. 浮选气泡制造技术进展[J]. 选煤技术, 2003(6):60-62. doi: 10.3969/j.issn.1001-3571.2003.06.011

    LI X B, GUO J, ZHOU X H, et al. Development of floatation bubble manufacturing technology[J]. Coal Preparation Technology, 2003(6):60-62. doi: 10.3969/j.issn.1001-3571.2003.06.011

    [5]

    韩子伟. 组合微泡发生器发泡性能研究[D]. 昆明:昆明理工大学, 2016.

    HAN Z W. Study on foaming performance of combined microbubble generator[D]. Kunming: Kunming University of Science and Technology, 2016.

    [6]

    李浙昆, 张宗华, 郭晟, 等. 微泡浮选射流气泡发生器的研究[J]. 矿业研究与开发, 2007, 27(5):54-56. doi: 10.3969/j.issn.1005-2763.2007.05.021

    LI Z K, ZHANG Z H, GUO S, et al. Research on jet bubble generator for microbubble floatation[J]. Mining Research and Development, 2007, 27(5):54-56. doi: 10.3969/j.issn.1005-2763.2007.05.021

    [7]

    邵延海. 浮选柱气泡发生器充气性能及应用研究[D]. 长沙: 中南大学, 2004.

    SHAO Y H. Study on aeration performance and application of flotation column bubble generation[D]. Changsha: Central South University, 2004.

    [8]

    徐振华. 气浮工艺中金属微孔管制造微气泡的研究[D]. 成都: 四川大学, 2006.XU Z H.

    Research on microbubbles generation by metal microporous tube in flotation technology[D]. Chengdu: Sichuan University, 2006.

    [9]

    程敏. 堇青石板式陶瓷膜微泡发生器的研究[D]. 贵阳:贵州大学, 2019 .

    CHENG M. Study on cordierite plate ceramic membrane microbubble generator[D]. Guiyang: Guizhou University, 2019.

    [10]

    黄光耀, 陈雯, 冯其明, 等. 浮选柱内微孔发泡器发泡性能研究[J]. 金属矿山, 2010(10):129-133.

    HUANG G Y, CHEN W, FENG Q M, et al. Foaming performance of microporous foaming generator[J]. Metal Mine, 2010(10):129-133.

    [11]

    高莹, 王晖, 鲁双, 等. 溶气浮选法处理含铬(Ⅵ)废水的研究[J]. 应用化工, 2009, 38(10):1469-1472.

    GAO Y, WANG H, LU S, et al. Research on removal of Cr(Ⅵ) from waste-water by using dissolved-air flotation method[J]. Applied Chemical Industry, 2009, 38(10):1469-1472.

    [12]

    刘殿文, 尚旭, 方建军, 等. 微细粒氧化铜矿物浮选方法研究[J]. 中国矿业, 2010, 19(1):79-81. doi: 10.3969/j.issn.1004-4051.2010.01.024

    LIU D W, SHANG X, FANG J J, et al. Flotation method research on fine-particle copper oxide minerals[J]. China Mining Magazine, 2010, 19(1):79-81. doi: 10.3969/j.issn.1004-4051.2010.01.024

    [13]

    Matis K A, 刘明鉴. 溶气浮选和电解浮选[J]. 国外金属矿选矿, 1990:1-15.

    MATIS K A, LIU M J. Dissolved air flotation and electrolytic flotation[J]. Metallic Ore Dressing Abroad, 1990:1-15.

    [14]

    Kentish S, Ashokkumar M. The physical and chemical effects of ultrasound. in ultrasound technologies for food and bioprocessing, Feng, H, Barbosa-Canovas G, Weiss J. Eds. Springer New York: New York, NY, 2011; pp 1-12.

    [15]

    欧乐明, 耿少沛, 冯其明. 超声波发泡及对气含率的影响[J]. 有色金属科学与工程, 2015, 6(5):80-84.

    OU L M, GENG S O, FENG Q M. Ultrasonic foaming and its effect on gas hold-up[J]. Nonferrous Metals Science and Engineering, 2015, 6(5):80-84.

    [16]

    Jiménez C, Talavera B, Sáez C, et al. Study of the production of hydrogen bubbles at low current densities for electro-flotation processes[J]. Journal of Chemical Technology and Biotechnology, 2010, 85:1368-1373. doi: 10.1002/jctb.2442

    [17]

    Glembotsky V A, Mamakov A A, Romanov A M, et al. Selective separation of fine mineral slimes using method of electric flotation[J]. Proceedings of 11th International Mineral Processing Congress Cagliari, 1975, 561–582.

    [18]

    陈金銮, 万晶, 施汉昌. 电解浮选反应器设计研究[C]. 2006新工艺新设备在自来水厂, 污水处理厂, 回用水厂, 垃圾处理场的应用研讨会论文集, 2006.

    CHEN J L, WAN J, SHI H C. Research on the design of electrolytic flotation reactor[C]. 2006 Proceedings of the Seminar on the Application of New Technology and New Equipment in Waterworks, Sewage Treatment Plants, Recycled Water Plants and Waste Disposal Plants, 2006.

    [19]

    朱超英, 易峦, 程建国, 等. 新型电解微泡浮选柱的研制与试验研究[J]. 矿冶工程, 2012, 32(8):46-48.

    ZHU C Y, YI L, CHENG J G, et al. Development and experimental study of a new electrolytic microbubble flotation column[J]. Mining and Metallurgical Engineering, 2012, 32(8):46-48.

    [20]

    薛伟江. 环保型直通孔结构多孔陶瓷的制备与性能[D]. 天津: 天津大学, 2009.

    XUAN W J. Preparation and properties of porous ceramics with features of eco- friendly and unidirectional aligned pores[D]. Tianjin: Tianjin University, 2009.

    [21]

    Tan Y H, Finch J A. Frother Structure-property Relationship: Effect of Alkyl Chain Length in Alcohols and Polyglycol Ethers on Bubble Rise Velocity[J]. Minerals. Engineering, 2016, 95:14-20. doi: 10.1016/j.mineng.2016.05.012

    [22]

    Zhu H, Zhu J, Alejandro L V, et al. Effect of Reagent Blend on Characteristics and Dispersion of Bubbles in A Flotation Column[J]. Journal of China Coal Society, 2019, 44:1586-1592.

    [23]

    Craig V S J, Ninham B W, Pashley R M. Effect of Electrolytes on Bubble Coalescence[J]. Nature, 1993, 364:317-319. doi: 10.1038/364317a0

    [24]

    Lessard R R, Zieminski S A. Bubble Coalescence and Gas Transfer in Aqueous Electrolytic Solutions[J]. Industrial and Engineering Chemistry Fundamentals, 1971, 10(2):260-269. doi: 10.1021/i160038a012

    [25]

    张雪勤, 蔡怡, 杨亚江. 两性离子/阴离子表面活性剂复配体系协同作用的研究[J]. 胶体与聚合物, 2002, 20(3):1-5. doi: 10.3969/j.issn.1009-1815.2002.03.001

    ZHANG X Q, CAI Y, YANG Y J. Study of cooperative effect of mixed system of zwitterionic and anionic surfactants[J]. Chinese Journal of Colloid and Polymer, 2002, 20(3):1-5. doi: 10.3969/j.issn.1009-1815.2002.03.001

    [26]

    Gorain B K, Franzidis J P, Manlapig E V. Studies on Impeller Type, Impeller Speed and Air Flow Rate in An Industrial Scale Flotation Cell—Part 1: Effect on Bubble Size Distribution[J]. Minerals. Engineering, 1995, 8:615-635. doi: 10.1016/0892-6875(95)00025-L

    [27]

    Zhu H, Valdivieso L A, Zhu J, et al. A Study of Bubble Size Evolution in Jameson Flotation Cell[J]. Chemical Engineering Research and Design, 2018, 137:461-466. doi: 10.1016/j.cherd.2018.08.005

    [28]

    惠恒雷. 射流发泡制造微气泡技术试验研究[D]. 青岛:中国石油大学(华东), 2011.

    HUI H L. Experimental study on technology of micro-bubble jet foam[D]. Qingdao: China University of Petroleum (Huadong), 2011.

    [29]

    贾彦. 起泡剂作用下单气泡运动特性实验研究[D]. 徐州: 中国矿业大学, 2016.

    JIA Y. Experimental study of surfactant effect on motion characteristic of single bubble[J]. Xuzhou: China University of Mining and Technology, 2016.

    [30]

    王军超, 李国胜, 韩加展, 等. 起泡剂对溶液中气泡形状和速度的影响研究[J]. 煤炭工程, 2016, 48(9):142-145.

    WANG J C, LI G S, HAN J Z, et al. Study on bubble shape and velocity in different frother solutions coal[J]. Engineering, 2016, 48(9):142-145.

    [31]

    Wu M, Gharib M. Experimental Studies on the Shape and Path of Small Air Bubbles Rising in Clean Water[J]. Physics of Fluids, 2002, 14(7):49-52. doi: 10.1063/1.1485767

    [32]

    David Reay, Ratcliff G A. Removal of Fine Particles from Water by Dispersed Air Flotation: Effects of Bubble Size and Particle Size on Collection Efficiency[J]. The Canadian Journal of Chemical Engineering, 2009, 51(2):178-185.

    [33]

    Yoon R H, Luttrell G H. The Effect of Bubble Size on Fine Particle Flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989, 5(1):101-122.

    [34]

    Flint L R, Howarth W J. The Collision Efficiency of Small Particles with Spherical Air Bubbles[J]. Chemical Engineering Science, 1971, 26(8):1155-1168. doi: 10.1016/0009-2509(71)87002-1

    [35]

    张世杰. 煤泥浮选过程中颗粒与气泡碰撞, 吸附规律研究[D]. 北京: 中国矿业大学(北京), 2015.

    ZHANG S J. Study on collision and attachment behavior between particle and bubble in coal slime flotation[D]. Beijing: China University of Mining and Technology (Beijing), 2015.

    [36]

    Hassanzadeha A, Hassasb B V, Kouachic S, et al. Effect of Bubble Size and Velocity on Collision Efficiency in Chalcopyrite Flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498:258-267.

    [37]

    Lee J E, Lee J K. Effect of microbubbles and particle size on the particle collection in the column flotation[J]. Korean Journal of Chemical Engineering, 2002, 19(4):703-710. doi: 10.1007/BF02699321

    [38]

    Yoon R, Luttrell G. The Effect of Bubble Size on Fine Particle Flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989, 5:101-102. doi: 10.1080/08827508908952646

    [39]

    罗德里古斯R T, 李长根, 崔洪山. 溶解气体浮选法(DAF)在矿业和矿物加工中的潜在应用[J]. 国外金属矿选矿, 2007:4-10.

    RODRIGUES R T, LI C G, CUI H S. Potential application of dissolved gas flotation (DAF) in mining and mineral processing[J]. Metallic Ore Dressing Abroad, 2007:4-10.

    [40]

    Finch, Dobby. Column flotation[M]. Pregamon Press, 1991.

    [41]

    许光前. 基于静态矿浆/泡沫界面区的气泡-颗粒脱附机理研究[D]. 徐州: 中国矿业大学, 2018.

    XU G Q. Mechanism of bubble-particle detachment at the static pulp/froth interface[D]. Xuzhou: China University of Mining and Technology, 2018.

    [42]

    Bournival G, de Oliveira e Souza L, Ata S, et al. Effect of Alcohol Frothing Agents on the Coalescence of Bubbles Coated with Hydrophobized Silica Particles[J]. Chemical Engineering Science, Elsevier, 2015, 131:1-11. doi: 10.1016/j.ces.2015.03.036

  • 加载中

(2)

计量
  • 文章访问数:  1480
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2020-07-19
刊出日期:  2022-04-25

目录