矿区煤矸石堆对土壤重金属污染时空特征研究

李杰锋. 矿区煤矸石堆对土壤重金属污染时空特征研究[J]. 矿产综合利用, 2022, (2): 181-186. doi: 10.3969/j.issn.1000-6532.2022.02.032
引用本文: 李杰锋. 矿区煤矸石堆对土壤重金属污染时空特征研究[J]. 矿产综合利用, 2022, (2): 181-186. doi: 10.3969/j.issn.1000-6532.2022.02.032
Li Jiefeng. Study on Temporal and Spatial Characteristics of Heavy Metal Pollution in Coal Gangue Piles in Mining Area[J]. Multipurpose Utilization of Mineral Resources, 2022, (2): 181-186. doi: 10.3969/j.issn.1000-6532.2022.02.032
Citation: Li Jiefeng. Study on Temporal and Spatial Characteristics of Heavy Metal Pollution in Coal Gangue Piles in Mining Area[J]. Multipurpose Utilization of Mineral Resources, 2022, (2): 181-186. doi: 10.3969/j.issn.1000-6532.2022.02.032

矿区煤矸石堆对土壤重金属污染时空特征研究

  • 基金项目: 山西省高等学校科技创新项目(2020L0711);吕梁市引进高层次科技人才重点研发项目(Rc2020-113)
详细信息
    作者简介: 李杰锋(1985-),男,博士,讲师
  • 中图分类号: TD989

Study on Temporal and Spatial Characteristics of Heavy Metal Pollution in Coal Gangue Piles in Mining Area

  • 伴随着煤炭资源的大量回采,产生了大量的煤矸石经过地表堆积形成矸石山。矸石山侵占大量土地的同时会释放多种有害重金属元素,能够在周围土壤中进行富集,通过食物链在生态中传递,会对煤矸石周围人群造成伤害。煤矸石周围土壤中重金属分布规律对于矿区生态安全具有重要意义。以山西某矿区两个典型矿井矸石山堆积地为研究对象,基于数理统计方法,分析了周围环境和土壤中七种重金属的分布特征。研究结果表明:甲、乙煤矿的煤矸石七种重金属元素含量明显高于当地背景值,Cr的污染最大,污染最小的是Hg;下风向区域的重金属污染含量明显高于上风向的重金属含量;平面方向上,煤矿甲的土壤重金属污染明显高于煤矿乙对土壤的污染与煤矿矸石堆堆放时间有关;煤矿矸石堆周围重金属元素含量随着距矸石堆的距离增加而减少,其变化趋势存在差异;随着采矿活动的不断进行,矿区矸石堆周围土壤中能够明显的表现出重金属积累的特征;甲、乙煤矿矸石堆周围土壤重金属元素含量随着深度的增加呈递减趋势。土壤中的重金属元素主要集中在土壤表层。煤矿甲在剖面方向上重金属含量煤明显高于煤矿乙。

  • 加载中
  • 图 1  重金属分布规律

    Figure 1. 

    图 2  矸石堆周围土壤不同深度下重金属元素浓度分布特征

    Figure 2. 

    表 1  矸石中重金属含量对比/(mg·kg-1)

    Table 1.  Comparison of heavy metal content in gangue

    名称PbZnCuCrCdHgAs
    山西省背景值15.50072.40025.00059.1000.11180.01939.4000
    煤矿甲矸石堆96.400170.2038.500204.500.36100.123015.670
    煤矿乙矸石堆62.50097.60034.200112.400.24200.084010.980
    下载: 导出CSV

    表 2  矸石堆周围土壤重金属污染评价结果

    Table 2.  Evaluation of heavy metal pollution in soil around gangue pile

    煤矿项目PbZnCuCrCdHgAs
    含量/
    (mg·kg-1)
    Igeo 含量/
    (mg·kg-1)
    Igeo含量/
    (mg·kg-1)
    Igeo含量/
    (mg·kg-1)
    Igeo含量/
    (mg·kg1)
    Igeo含量/
    (mg·kg-1)
    Igeo含量/
    (mg·kg-1)
    Igeo


    上风口 91.75 1.98
    149.58
    0.46 28.65 -0.38 212.50 1.26 0.3270 0.96 0.0650 1.16 21.560 0.61
    下风向 92.82 1.99 152.62 0.49 39.12 0.06 276.80 1.64 0.4220 1.33 0.0870 1.58 27.420 0.96
    平均值 92.29 1.98 151.10 0.47 33.89 -0.14 244.65 1.46 0.3745 1.16 0.0760 1.39 24.490 0.80
    污染度 中度 / 无—中 / 无污染 / 中度 / 无—中 / 中度 / 无—中 /


    上风口 40.27 0.79 95.740 -0.18 33.82 -0.15 78.480 -0.17 0.2420 0.53 0.0520 0.84 12.170 -0.21
    下风向 46.69 0.97 102.75 -0.07 37.25 -0.01 92.500 0.06 0.3210 0.94 0.0740 1.35 16.450 0.22
    平均值 43.48 0.90 99.250 -0.12 35.54 -0.07 85.490 -0.05 0.2815 0.75 0.0630 1.21 14.310 0.02
    污染度 无—中 / 无污 / 无污染 / 无污染 / 无—中 / 无—中 / 无—中 /
    下载: 导出CSV
  • [1]

    王涛, 王晓平, 张新. 煤中伴生矿产赋存状态及提取方法综述[J]. 矿产综合利用, 2019(4):21-25. doi: 10.3969/j.issn.1000-6532.2019.04.004

    WANG T, WANG X P, ZHANG X. Summary of occurrence and extraction methods of associated minerals in coal[J]. Multipurpose Utilization of Mineral Resources, 2019(4):21-25. doi: 10.3969/j.issn.1000-6532.2019.04.004

    [2]

    王晓蕾. 新型煤岩体加固注浆料制备及应用分析[J]. 地下空间与工程学报, 2020, 16(3):844-851.

    WANG X L. Preparation and application analysis on a new grouting material for coal and rock mass reinforcement[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(3):844-851.

    [3]

    刘应冬, 徐力, 王先达, 等. 攀枝花钒钛磁铁矿尾矿中主要金属元素淋滤浸出行为研究[J]. 矿产综合利用, 2020(6):84-90. doi: 10.3969/j.issn.1000-6532.2020.06.015

    LIU Y D, XU L, WANG X D, et al. Study on leaching behavior of main metal elements from panzhihua vanadium-titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(6):84-90. doi: 10.3969/j.issn.1000-6532.2020.06.015

    [4]

    刘应冬, 代力, 张卫华. 青海某金矿矿集区土壤重金属污染评价及综合利用讨论[J]. 矿产综合利用, 2018(5):97-100. doi: 10.3969/j.issn.1000-6532.2018.05.021

    LIU Y D, DAI L, ZHANG W H. Assessment of soil heavy metals pollution and comprehensive utilization in a gold mine area in qinghai[J]. Multipurpose Utilization of Mineral Resources, 2018(5):97-100. doi: 10.3969/j.issn.1000-6532.2018.05.021

    [5]

    韩张雄, 万的军, 胡建平, 等. 土壤中重金属元素的迁移转化规律及其影响因素[J]. 矿产综合利用, 2017(6):5-9. doi: 10.3969/j.issn.1000-6532.2017.06.002

    HANG Z X, WAN D J, HU J P, et al. Migration and transformation of heavy metals in soil and its influencing factors[J]. Multipurpose Utilization of Mineral Resources, 2017(6):5-9. doi: 10.3969/j.issn.1000-6532.2017.06.002

    [6]

    LIU X Y, BAI Z K, SHI H D, et al. Heavy metal pollution of soils from coal mines in China[J]. Natural Hazards, 2019, 99(2):1163-1177. doi: 10.1007/s11069-019-03771-5

    [7]

    ZHANG K, GAO J, MEN D P, et al. Insight into the heavy metal binding properties of dissolved organic matter in mine water affected by water-rock interaction of coal seam goaf[J]. Chemosphere, 2021, 45(2):129-134.

    [8]

    闫英师, 李玉凤, 赵礼兵. 改性钢渣吸附重金属离子的研究现状[J]. 矿产综合利用, 2021, 41(1):8-13. doi: 10.3969/j.issn.1000-6532.2021.01.002

    YAN Y S, LI Y F, ZHAO L B. Research status of heavy metal ions adsorption by modified steel slag[J]. Multipurpose Utilization of Mineral Resources, 2021, 41(1):8-13. doi: 10.3969/j.issn.1000-6532.2021.01.002

    [9]

    HOU L, LI X J, LI F. Hyperspectral-based inversion of heavy metal content in the soil of coal mining areas[J]. Journal of environmental quality, 2019, 48(1):57-63. doi: 10.2134/jeq2018.04.0130

    [10]

    刘雅瑾, 雷国元. 冶金工业园周边水域底泥中重金属的污染评价[J]. 矿产综合利用, 2017 (2): 90-94.

    LIU Y J, LEI G Y. Research pollution assessment of heavy metal in the surrounding waters sediments from metallurgical industrial park[J] Multipurpose Utilization of Mineral Resources, 2017 (2): 90-94.

    [11]

    Han Y, Li Q, Liu N. Heavy metal accumulation of 13 native plant species around a coal gangue dump and their potentials for phytoremediation[J]. Nature Environment and Pollution Technolo -gy, 2020, 19(1):191-199.

  • 加载中

(2)

(2)

计量
  • 文章访问数:  759
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2021-04-22
修回日期:  2021-05-21
刊出日期:  2022-04-25

目录