Analysis of Heavy Metal Pollution in the Environment of Laoheba Phosphate Mine in Mabian Region,Sichuan Province
-
摘要:
马边老河坝磷矿资源丰富,矿业活动频繁,对矿区内水土环境影响不明。为查明老河坝磷矿区内矿山环境及水体、土壤内的重金属污染程度,以老河坝磷矿区水土环境为研究对象,对地表水及表层土壤的重金属元素(Cd、As、Cu、Cr、Pb、Zn)含量及其分布特征开展了生态污染程度评价。结果表明:研究区水质较好,重金属及磷元素污染程度较低,符合《地表水环境质量标准》(GB 3838—2002)Ⅲ类水质标准的相关指标。土壤中金属元素平均值与四川省土壤元素背景值相比:Cd元素超标8.75倍, Pb元素超标3.36倍, Zn元素超标1.94倍, As元素超标1.48倍, Cu元素超标1.36倍,P元素超标7.47倍。与中国土壤元素背景值相比:Cd元素超标10倍, Pb元素超标4.40倍, Zn元素超标2.48倍, As元素超标1.88倍, Cu 元素超标2.12倍,Cr元素超标1.42倍。潜在生态危害指数法显示,马边老河坝磷矿表层土壤重金属污染程度依次为Cd>As >Pb >Cu>Zn>Cr,Cd元素危害最大,其次是As、Pb和Zn,为中度生态污染风险。累积指数法显示,马边老河坝磷矿表层土壤重金属污染程度依次为Cd>Pb>As>Zn>Cu>Cr,Cd、Pb污染程度为中度。综上所述,马边老河坝磷矿重金属污染对水体影响小,而土壤重金属污染不可忽视。
Abstract:Laoheba phosphate mineral resources are rich in Mabian region, and mining activities are frequent. The impact on the soil and water environment is unclear in the mining area. In order to find out the pollution degree of heavy metals in the mine environment, water body and soil in the Laoheba phosphate ore area, the content and distribution characteristics of heavy metals (Cd, As, Cu, Cr, Pb, Zn) in the surface water and surface soil were evaluated by taking the soil and water environment in the Laoheba phosphate ore area as the research object. The results indicate that the water quality in the study area is good, and the pollution degree of heavy metals and phosphorus is low, which conforms to the relevant indexes of the Environmental Quality Standard for Surface Water (GB3838-2002)Ⅲ. Compared with the background value of soil elements in Sichuan Province, the mean value of metal elements in the soil is 8.75 times, 3.36 times, 1.94 times, 1.48 times, 1.36 times, and 7.47 times of Cd, Pb, Zn, Cu and P. Compared with the background values of soil elements in China, Cd exceeds the standard by 10 times, Pb 4.40 times, Zn 2.48 times, As 1.88 times, Cu 2.12 times and Cr 1.42 times. The potential ecological hazard index method showed that the pollution degree of heavy metals in the surface soil of Laoheba phosphate mine was Cd> As > Pb > Cu> Zn>Cr, followed by Cd element, followed by As, Pb and Zn, which was a moderate ecological pollution risk. The accumulation index method showed that the pollution degree of heavy metals in the surface soil of Mabian Laoheba phosphate mine was Cd>Pb>As>Zn>Cu>Cr, and the pollution degree of Cd and Pb was moderate. In conclusion, the heavy metal pollution of phosphate ore has little influence on water body, while the heavy metal pollution of soil cannot be ignored in Laoheba, Mabian.
-
表 1 马边老河坝磷矿水体样品分析测试结果/%
Table 1. Analysis and test results of water samples from Laoheba phosphate rock in Mabian
编号 Cu Pb Zn Cr Cd As P pH值 C1 1.92 0.82 1.97 0.046 0.059 0.301 0.078 8.03 C2 5.55 1.55 6.61 0.027 0.034 0.407 0.093 8.4 C3 1.62 9.08 38.9 0.034 0.223 2.3 1.4 8.61 C4 0.9 6.28 27.7 0.028 0.462 1.64 1.04 8.47 C5 13 454 793 0.023 4.4 19.7 31 8.43 C6 0.331 0.412 8.72 0.025 0.022 1.51 0.919 8.36 C7 0.07 0.38 10.5 0.017 0.024 0.379 0.065 8.32 C8 0.404 14.2 26.9 0.027 0.207 1.84 1.54 8.4 C9 2.51 3.4 9.58 0.04 0.057 2.34 0.241 8.33 C10 0.142 0.707 3.56 0.028 0.019 0.428 0.048 8.45 平均值 2.64 49.08 92.74 0.03 0.55 3.08 3.64 8.38 水质标准(Ⅱ类) 1000 10 1000 50 5 50 3 - 水质标准(Ⅲ类) 1000 50 1000 50 5 50 5 - 注: 水质标准参照国家《地表水环境质量标准》(GB 3838—2002) 中的水质标准。 表 2 马边老河坝磷矿表层土壤样品分析测试结果/%
Table 2. Analysis and test results of surface soil samples of Laoheba phosphate mine in Mabian
编号 Cu Pb Zn Cr Cd As P pH值 BC1 14.8 490 625 63 1.45 25.07 48100 8.17 BC2 41.8 127 319 79.1 1.5 15.71 4520 7.72 BC3 91 63.8 59.6 62.4 0.33 19.15 1360 7.33 BC4 24.2 39.8 102 73.8 0.77 16.85 999 8.09 BC5 31.4 37.8 89.8 93.4 0.88 8.41 1140 8.38 BC6 62 39.2 65.3 71.2 0.49 12.88 2150 6.95 BC7 56.8 65.2 129 74.6 0.76 20.25 1470 7.92 BC8 44.6 121 140 83 0.3 10.68 1740 5.3 BC9 36.8 26.0 86.8 86.1 0.26 14.83 395 8.22 BC10 20.6 28.1 61.6 65.7 0.30 10.27 592 8.17 平均值 42.40 103.79 167.81 75.23 0.70 15.41 6246.60 7.63 最大值 91.00 490.00 625.00 93.40 1.50 25.07 48100 8.38 最小值 14.80 26.00 59.60 62.40 0.26 8.41 395 5.30 四川土壤背景值 32.7 40.4 89.4 86.2 0.34 10.3 836 - 中国土壤背景值 20.00 23.60 67.70 53.10 0.07 8.20 - - 表 3 马边老河坝重点调查区植物分析结果/(g·t-1)
Table 3. Plant analysis results in the key investigation area of the old river dam in Mabian
部位 位置 Hg Mo V Cr Co Ni As Cd Pb P Cu Mn Zn 枝 二坝 0.00279 0.13 0.118 1.80 0.090 6.43 <1 0.043 1.72 0.12 3.24 1.37 20.7 叶 0.0119 0.32 0.141 2.60 0.26 14.1 <1 0.11 5.45 0.19 6.36 12.7 37.5 果 <0.001 0.17 0.048 1.15 0.021 5.28 <1 0.011 0.25 0.36 2.03 1.93 14.7 枝 铜厂埂 0.00416 0.29 0.082 0.94 0.046 3.98 <1 0.039 1.24 0.063 3.95 3.60 18.6 叶 0.0132 0.55 0.073 2.15 0.16 5.69 11.4 0.089 3.15 0.14 7.35 12.9 18.8 果 <0.001 0.19 0.030 0.91 0.014 1.74 <1 0.0066 0.17 0.30 1.60 2.16 12.4 枝 暴风坪 <0.001 0.12 0.094 1.18 0.11 8.99 <1 0.059 0.92 0.12 4.39 7.46 8.70 叶 0.0234 0.28 0.211 2.68 0.46 46.9 230 0.34 19.6 0.17 14.3 27.7 42.0 果 <0.001 0.092 0.034 1.93 0.049 4.40 <1 0.011 0.24 0.31 2.21 1.61 11.9 表 4 马边磷矿元素平均值与西南土壤背景值对比/(g·t-1)
Table 4. Comparison of the average value of phosphate rock elements in Mabian and the background value of soil in Southwest China
表 5 潜在生态危害指数划分标准
Table 5. Classification criteria of potential ecological hazard index
Cir 污染程度 Eir RI 风险程度 Cir<1 轻污染 Eir<30 RI<50 轻微 1≤Cir<3 中污染 30≤Eir<60 50≤RI<100 中度 3≤Cir<6 重污染 60≤Eir<120 100≤RI<200 强 Cir≥6 极重污染 120≤Eir<240 200≤RI<400 很强 - - Eir≥240 RI≥400 极强 表 6 土壤采样点潜在生态危害指数评价结果/(g·t-1)
Table 6. Evaluation results of potential ecological hazard index at soil sampling sites
采样点 Eir RI 危害程度 Cu Pb Zn Cr Cd As BC1 2.26 60.64 6.99 1.46 127.94 24.34 199.30 强 BC2 6.39 15.72 3.57 1.84 132.35 15.25 159.87 强 BC3 13.91 7.90 0.67 1.45 29.12 18.59 53.04 中度 BC4 3.70 4.93 1.14 1.71 67.94 16.36 79.42 中度 BC5 4.80 4.68 1.00 2.17 77.65 8.17 90.30 中度 BC6 9.48 4.85 0.73 1.65 43.24 12.50 59.95 中度 BC7 8.69 8.07 1.44 1.73 67.06 19.66 86.99 中度 BC8 6.82 14.98 1.57 1.93 26.47 10.37 51.76 中度 BC9 5.63 3.22 0.97 2.00 22.94 14.40 34.75 轻微 BC10 3.15 3.48 0.69 1.52 26.47 9.97 35.31 轻微 平均值 6.48 12.85 1.88 1.75 62.12 14.96 85.07 中度 表 7 马边老河坝土壤中重金属Igeo值与污染分级
Table 7. Igeo value and pollution classification of heavy metals in soil of old river dam in Mabian
采样点 Cu Pb Zn Cr Cd As BC1 -1.73 3.02 2.22 -1.04 1.51 0.70 BC2 -0.23 1.07 1.25 -0.71 1.56 0.02 BC3 0.89 0.07 -1.17 -1.05 -0.63 0.31 BC4 -1.02 -0.61 -0.39 -0.81 0.59 0.13 BC5 -0.64 -0.68 -0.58 -0.47 0.79 -0.88 BC6 0.34 -0.63 -1.04 -0.86 -0.06 -0.26 BC7 0.21 0.11 -0.06 -0.79 0.58 0.39 BC8 -0.14 1.00 0.06 -0.64 -0.77 -0.53 BC9 -0.41 -1.22 -0.63 -0.59 -0.97 -0.06 BC10 -1.25 -1.11 -1.12 -0.98 -0.77 -0.59 平均值 -0.40 0.10 -0.15 -0.79 0.18 -0.08 污染等级 0 1 0 0 1 0 污染程度 清洁 轻度 清洁 清洁 轻度 清洁 -
[1] 周永兴, 田宗平, 曹健, 等. 磷矿选矿现状及发展趋势[J]. 广州化工, 2014, 42(19):31-33. doi: 10.3969/j.issn.1001-9677.2014.19.013
ZHOU Y X, TIAN Z P, CAO J, et al. Current Situation and Development Trend of Phosphate Rock Enrichment[J]. Guangzhou Chemical Industry, 2014, 42(19):31-33. doi: 10.3969/j.issn.1001-9677.2014.19.013
[2] 王显炜, 徐友宁, 杨敏, 等. 国内外矿山土壤重金属污染风险评价方法综述[J]. 中国矿业, 2009, 18(10):54-56. doi: 10.3969/j.issn.1004-4051.2009.10.018
WANG X W, XU Y N, YANG M, et al. Review on risk assessment methods for soil heavy metal contamination in mines at home and abroad[J]. China Mining Magzine, 2009, 18(10):54-56. doi: 10.3969/j.issn.1004-4051.2009.10.018
[3] 陈峰, 蒋新, 唐访良, 等. 层次分析法与地理信息系统在农田土壤重金属污染评价中的应用[J]. 环境污染与防治, 2012, 34(7):6-8+14. doi: 10.3969/j.issn.1001-3865.2012.07.002
CHEN F, JIANG X, TANG F L, et al. Application of AHP and GIS in evaluation of agricultural soil heavy metals pollution[J]. Environmental pollution and prevention, 2012, 34(7):6-8+14. doi: 10.3969/j.issn.1001-3865.2012.07.002
[4] 石晓翠, 钱翌, 熊建新. 模糊数学模型在土壤重金属污染评价中的应用[J]. 土壤通报, 2006, 37(2):2334-2336.
SHI X C, QIAN Y, XIONG J X. Application of Fuzzy mathematics models in the Evaluation of soil heavy metal pollution[J]. Chinese journal of soil science, 2006, 37(2):2334-2336.
[5] 王晓钰. 基于灰色关联度的土壤环境重金属污染综合评价法[J]. 河南师范大学学报(自然科学版), 2013, 41(3):110-113.
WANG X Y. An integrated method for assessing the pollution level of soil based on grey correlation theory[J]. Journal of Henan normal university (Natural science edition), 2013, 41(3):110-113.
[6] 聂静茹, 马友华, 徐露露, 等. 我国《土壤环境质量标准》中重金属污染相关问题探讨[J]. 农业资源与环境学报, 2013(6):44-49. doi: 10.3969/j.issn.1005-4944.2013.06.009
NIE J R, MA Y H, XU L L, et al. Discussion About Heavy Metal Pollution in Soil Environmental Quality Standard in China[J]. Journal of Agricultural Resources and Environment, 2013(6):44-49. doi: 10.3969/j.issn.1005-4944.2013.06.009
[7] 徐争启, 黄寰, 宋昊, 等. 四川省马边-雷波磷矿基地环境效应综合评估报告[R]. 2018.
XU Z Q, HUANG H, SONG H, et al. Comprehensive assessment report on environmental effect of mabian-leibo phosphate mine base, sichuan province[R]. 2018.
[8] 程馨, 施泽明, 张成江, 等. 贵州开阳磷矿开采对洋水河水体重金属污染与评价[J]. 中国环境监测, 2015, 31(2):78-83. doi: 10.3969/j.issn.1002-6002.2015.02.016
CHEN X, SHI Z M, ZHANG C J, et al. Evaluation of Heavy Metals Pollution to Yangshui River in Mining of Phosphate Rock of Kaiyang Phosphate Mine in Guizhou[J]. Environmental Monitoring in China, 2015, 31(2):78-83. doi: 10.3969/j.issn.1002-6002.2015.02.016
[9] 张家铜, 刘佳麟. 水体重金属污染的危害及其治理[J]. 山东工业技术, 2019, 12(12):35.
ZHANG J T, LIU J L. Harm of heavy metal pollution in water body and its treatment[J]. Shandong Industrial Technology, 2019, 12(12):35.
[10] 国家环境保护局. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
National Environmental Protection Agency. Soil elements in China [M]. Beijing: China Environmental Science Press, 1990.
[11] Hakanson L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980, 14(8):975-1001. doi: 10.1016/0043-1354(80)90143-8
[12] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008(2):112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030
XU Z Q, NI S J, TUO X G, et al. Calculation of Heavy Metals’Toxicity Coefficient in the Evaluation of Potential Ecological Risk Index[J]. Environmental Science & Technology, 2008(2):112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030
[13] 于云江, 胡林凯, 杨彦, 等. 典型流域农田土壤重金属污染特征及生态风险评价[J]. 环境科学研究, 2010, 23(12):1523-1527.
YU Y J, HU L K, YANG Y, et al. Pollution Characteristics and Ecological Risk Assessment of Heavy Metals in Farmland Soils of a Typical Basin[J]. Research of Environmental Sciences, 2010, 23(12):1523-1527.