-
摘要:
对云南某钛铁矿进行了工艺矿物学研究。结果表明: 矿石中钛品位为5.62%,主要有用金属矿物为钛铁矿和钒钛磁铁矿,分别占总钛的61.39%和11.03%。脉石矿物主要是斜长石和钛辉石,脉石矿物中主要成分为SiO2和Al2O3,其含量分别为42.35%和12.53%。矿样中粗粒钛铁矿多与钒钛磁铁矿和榍石及硅酸盐紧密共生,其集合体的粒度主要集中在 0.02~0.30 mm。赋存于榍石与硅酸盐矿物中的钛多达27.58%。探索性实验结果表明:弱磁-强磁选可以有效地回收矿石中的强磁性矿物,并抛出大量的脉石矿物,实现钛铁矿的富集。因此,该矿石属于低品位难选钛铁矿,实现钛铁矿物的有效回收对该资源的开发利用具有重要的实践意义。
Abstract:The process mineralogy of an ilmenite in Yunnan Province was studied. The results showed that the grade of titanium in the ore sample was 5.62%. The main metal minerals in the ore were ilmenite and vanadium ilmenite, which occupied for 61.39% and 11.03% of the total titanium, respectively. The gangue minerals were plagioclase and titanaugite. The contents of SiO2 and Al2O3 were 42.35% and 12.53%, respectively. Most of the coarse ilmenite minerals in the samples were closely associated with vanadium ilmenite, sphene and silicate. Meanwhile, the particle size of the aggregation was mainly concentrated in 0.02~0.30 mm, whereas, 27.58% of titanium occurred in sphene and silicate minerals. Exploratory experimental results of low intensity-high intensity magnetic separation indicated that the strong magnetic minerals could be recovered and plenty of gangue minerals could be removed effectively, resulting in the concentration of ilmenite minerals. Thus, the ore belonged to a low grade refractory ilmenite and it will be significant importance to recover the ilmenite effectively for the exploitation and utilization of this resource.
-
Key words:
- Ilmenite /
- Vanadium ilmenite /
- Titanaugite /
- Dissemination size /
- Process mineralogy
-
表 1 矿石主要化学成分分析结果/%
Table 1. Main chemical analysis results of the run-of-mine ore
TiO2 Fe V2O5 SiO2 A12O3 CaO Na2O S P 5.62 17.35 0.09 42.35 12.53 3.2 1.35 0.32 0.02 表 2 钛物相分析结果
Table 2. Analysis results of Ti-distribution among mineralogical phase
钛物相 钛铁矿中钛 钒钛磁铁矿中的钛 榍石中钛 硅酸盐中钛 总钛 含量/% 3.45 0.62 0.42 1.13 5.62 分布率/% 61.39 11.03 7.47 20.11 100.00 表 3 矿石的矿物组成
Table 3. Mineral composition analysis results of the ore
矿物 钛铁矿 榍石 磁铁矿 角闪石 钛辉石 黑云母 含量/% 9.55 1.45 1.32 2.15 34.85 微量 矿物 斜长石 方解石 黄铁矿 黄铜矿 石英 萤石 含量/% 43.53 1.2 0.78 微量 1.56 1.35 表 4 矿石中矿物成分和嵌布粒度分析
Table 4. Mineral composition and dissemination size of the ore
矿物名称 分子式 矿物粒度/mm 钛铁矿 FeTiO3 0. 02~ 0.30 斜长石 NaAlSi3O8 0. 02 ~ 0.15 含钛辉石 Ca(Mg,Fe2+,Fe3+,Ti,Al) [Si,Al)]2O6 0. 02~0.30 黄铁矿 FeS2 0.01 ~ 0.30 角闪石 Ca2Na(Mg,Fe)4(Al,Fe3+)[(Si,Al)4O11]2(OH)2 < 0.006 表 5 原矿样粒度筛析结果
Table 5. Screen analysis results of the raw ore
粒级/mm 产率/% TiO2品位/% Ti金属分布率/% 个别 累计 个别 累计 +0.5 10.54 12.54 2.65 4.94 4.94 -0.5+ 0.2 32.45 42.99 8.45 48.52 53.46 -0.2+0.1 25.25 68.24 7.42 33.15 86.62 -0.1+0.074 10.38 78.62 4.45 8.17 94.79 -0.074+ 0.037 9.13 87.75 1.65 2.67 97.46 -0.037+0.019 8.15 95.9 1.25 1.80 99.26 -0.019 4.10 100.00 1.02 0.74 100.00 合计 100.00 5.65 100.00 表 6 弱磁-强磁选探索性实验结果
Table 6. Exploratory experimental results of low intensity-high intensity magnetic separation
作业 产品 产率/% Fe品位/% Fe回收率/% 精矿 0.30 54.50 94.29 弱磁 尾矿 99.70 0.99 5.71 原矿 100.00 17.34 100.00 产率/% TiO2品位/% TiO2回收率/% 精矿 57.20 8.70 85.51 强磁 尾矿 42.50 0.89 6.49 合计 99.70 5.82 92.00 -
[1] 邓孝纯, 李慧, 王鹏程, 等. 金属钛的制备工艺[J]. 矿产综合利用, 2020(1):39-42. doi: 10.3969/j.issn.1000-6532.2020.01.007
DENG X C, LI H, WANG P C, et al. Preparation process of metal titanium[J]. Multipurpose Utilization of Mineral Resources, 2020(1):39-42. doi: 10.3969/j.issn.1000-6532.2020.01.007
[2] 王利珍, 刘洋, 曹佳宏,等. 某钛铁矿石的工艺矿物学特征[J]. 金属矿山, 2016(5):91-94. doi: 10.3969/j.issn.1001-1250.2016.05.020
WANG L Z, LIU Y, CAO J H, et al. Technological mineralogical characteristics of a certain ilmenite ore[J]. Metal Mine, 2016(5):91-94. doi: 10.3969/j.issn.1001-1250.2016.05.020
[3] 马驰, 卫敏, 卞孝东, 等. 山东某钛铁矿石工艺矿物学研究[J]. 金属矿山, 2016(3):103-106. doi: 10.3969/j.issn.1001-1250.2016.03.022
MA C, WEI M, BIAN X D, et al. Research on process mineralogy of an ilmenite ore in Shandong[J]. Metal Mine, 2016(3):103-106. doi: 10.3969/j.issn.1001-1250.2016.03.022
[4] 薛忠言, 曾令熙, 刘应冬. 太和钒钛磁铁矿中硫化物的工艺矿物学研究[J]. 矿产综合利用, 2019(3):78-81. doi: 10.3969/j.issn.1000-6532.2019.03.018
XUE Z Y, ZENG L X, LIU Y D. Process mineralogy of the sulfide in the Taihe vanadium titanomagnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3):78-81. doi: 10.3969/j.issn.1000-6532.2019.03.018
[5] 李城, 王伟之. 钒钛磁铁矿中钛的柱机联合全浮工艺实验研究[J]. 矿产综合利用, 2019(3):40-43. doi: 10.3969/j.issn.1000-6532.2019.03.009
LI C, WANG W Z. Experimental study on the combined full-floating process of titanium in vanadium-titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3):40-43. doi: 10.3969/j.issn.1000-6532.2019.03.009
[6] 邓冰, 张渊, 杨永涛, 等. 攀西某钒钛磁铁矿选铁尾矿选钛试验研究[J]. 矿产综合利用, 2018(2):91-96. doi: 10.3969/j.issn.1000-6532.2018.02.020
DENG B, ZHANG Y, YANG Y T, et al. Experimental study on the beneficiation of iron tailings from a vanadium-titanium magnetite mine in Panxi[J]. Multipurpose Utilization of Mineral Resources, 2018(2):91-96. doi: 10.3969/j.issn.1000-6532.2018.02.020
[7] 宋涛, 王祖旭, 朱冰龙, 等. 风化型钛铁矿矿物学与选矿工艺的研究[J]. 云南冶金, 2013, 42(6):13-22. doi: 10.3969/j.issn.1006-0308.2013.06.004
SONG T, WANG Z X, ZHU B L, et al. Research on weathered ilmenite mineralogy and beneficiation process[J]. Yunnan Metallurgy, 2013, 42(6):13-22. doi: 10.3969/j.issn.1006-0308.2013.06.004