LiFePO4的制备及改性工艺的研究进展

张锐, 梁精龙, 李慧. LiFePO4的制备及改性工艺的研究进展[J]. 矿产综合利用, 2022, 43(3): 51-57. doi: 10.3969/j.issn.1000-6532.2022.03.010
引用本文: 张锐, 梁精龙, 李慧. LiFePO4的制备及改性工艺的研究进展[J]. 矿产综合利用, 2022, 43(3): 51-57. doi: 10.3969/j.issn.1000-6532.2022.03.010
Zhang Rui, Liang Jinglong, Li Hui. Research Progress on Preparation and Modification Technology of LiFePO4[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 51-57. doi: 10.3969/j.issn.1000-6532.2022.03.010
Citation: Zhang Rui, Liang Jinglong, Li Hui. Research Progress on Preparation and Modification Technology of LiFePO4[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 51-57. doi: 10.3969/j.issn.1000-6532.2022.03.010

LiFePO4的制备及改性工艺的研究进展

  • 基金项目: 国家自然科学基金项目(51774143)
详细信息
    作者简介: 张锐(1992-),女,硕士,主要从事冶金热能工程研究
    通讯作者: 梁精龙(1979-),男,博士,教授,主要从事冶金过程系统节能、资源能源综合利用等研究工作
  • 中图分类号: TD989

Research Progress on Preparation and Modification Technology of LiFePO4

More Information
  • 磷酸铁锂电池的性能优异,广泛应用于诸多领域。本文简要介绍了高温固相法、碳热还原法和水热法这三种常用的磷酸铁锂制备工艺,并分析、比较其优缺点。同时对近年来的一些关于包覆改性和掺杂改性的研究成果进行总结概括。

  • 加载中
  • [1]

    田柳文, 于华, 张文峰, 等. 锂离子电池的明星材料磷酸铁锂: 基本性能、优化改性及未来展望[J]. 材料导报, 2019(21):3561-3579. doi: 10.11896/cldb.18090309

    TIAN L W, YU H, ZHANG W F, et al. The star material of lithium ion batteries, lifepo4: basic properties, optimized modification and future prospects[J]. Materials Reports, 2019(21):3561-3579. doi: 10.11896/cldb.18090309

    [2]

    陈继勇, 卢欣欣. 磷酸铁锂电池及其新能源汽车启动电源性能分析[J]. 时代汽车, 2019(200):54-55.

    CHEN J Y, LU X X. Performance analysis on lithium iron phosphate battery as starting power for new energy automobile[J]. Auto Time, 2019(200):54-55.

    [3]

    胡斌, 王良秀, 吴国栋. 船用磷酸铁锂电池动力系统短路特性研究[J]. 船舶工程, 2019(10):105-110.

    HU B, WANG L X, WU G D. Study on short current characteristics of marine lithium iron phosphate battery power system[J]. Ship Engineering, 2019(10):105-110.

    [4]

    罗剑锋, 马吉富. 5G通信后备电源用磷酸铁锂电池系统的研制[J]. 通信电源技术, 2019(9):16-19.

    LUO J F, MA J F. Development of lithium iron phosphate battery system for 5G communication backup power supply[J]. Telecom Power Technology, 2019(9):16-19.

    [5]

    高媛. 高性能锂离子电池正极材料磷酸铁锂的合成及改性研究[D]. 重庆: 重庆大学, 2017.

    GAO Y. Synthesis and modification of LiFePO4 as a cathode material for lithium-ion batteries [D]. Chongqing: Chongqing University, 2017.

    [6]

    Yuhan Sun, Qiang Zhao, Chunhui Luo, et al. A novel strategy for the synthesis of Fe3(PO4)2 using Fe-P waste slag and CO2 followed by its use as the precursor for LiFePO4 preparation[J]. ASC Omega, 2019, 4:9932-9938.

    [7]

    Ondrej Cech, Onderj Klvac, Petra Benesova, et al. Synthesizing a LiFePO4/graphene composite with electrochemically prepared few-layer grapheme[J]. Journal of Energy Storage, 2019, 22:373-377. doi: 10.1016/j.est.2019.02.020

    [8]

    Yina Wu, Le Zhou, Guoqing Xu, et al. Preparation of hightap density LiFePO4/C through carbothermal reduction process using beta-cyclodextrin as carbon source [J]. International Journal of Electrochemical Science, 2018, 13: 2958-2968.

    [9]

    Longjiao Chang, Yafeng Wang, Shaohua Luo, et al. Carbothermal reduction preparation and performance of LiFePO4/C by using ammonium jarosite extracted from vanadium slag as iron source[J]. Ionics, 2019, 25(12):5725-5734. doi: 10.1007/s11581-019-03155-6

    [10]

    Shoufeng Yang, PeterY Zavalij, M Stanley Whittingham. Hydrotheamal synthesis of lithium iron phosphate cathodes[J]. Electrochemistry Communications, 2001, 3:505-508. doi: 10.1016/S1388-2481(01)00200-4

    [11]

    汪勇, 陈恳, 查红英, 等. 水热法合成纳米LiFePO4材料[J]. 电源技术, 2015(4):688-690+762. doi: 10.3969/j.issn.1002-087X.2015.04.025

    WANG Y, CHEN K, ZHA H Y, et al. Hydrothermal synthesis of LiFePO4 nano-materials[J]. Chinese Journal of Power Sources, 2015(4):688-690+762. doi: 10.3969/j.issn.1002-087X.2015.04.025

    [12]

    Satish Bollojua, Rupesh Ronana, Shao-Tzu Wu, et al. A green and facile approach for hydrothermal synthesis of LiFePO4 using iron metal directly[J]. Electrochimica Acta, 2016, 220:164-168. doi: 10.1016/j.electacta.2016.10.066

    [13]

    李高峰, 李志敏, 宁涛, 等. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018(9):23-30. doi: 10.11868/j.issn.1001-4381.2017.001182

    LI G F, LI Z M, NING T, et al. Research progress of cathode materials modified by surface coating for lithium ion batteries[J]. Journal of Materials Engineering, 2018(9):23-30. doi: 10.11868/j.issn.1001-4381.2017.001182

    [14]

    吴关. 锂离子电池正极材料LiFePO4与LiNi0.8Co0.15Al0.05O2的制备、改性及电化学性能研究[D]. 武汉: 武汉科技大学, 2018: 12.

    WU G. Synthesis, modification and electrochemical performance of LiFePO4 and LiNi0.8Co0.15Al0. 05O2 cathode materials for lithium ion batteries[D]. WuHan: Wuhan University of Science and Technology, 2018: 12.

    [15]

    Xufeng Wang, Zhijun Feng, Juntong Huang, et al. Graphene-decorated carbon-coated LiFePO4 nanospheres as a highperformance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127:149-157. doi: 10.1016/j.carbon.2017.10.101

    [16]

    Zheng Zhan, Mingming Wang, Junfeng Xu, et al. Modification of lithium iron phosphate bycarbon coating[J]. International Journal of Electrochemical Science, 2019, 14:10622-10632.

    [17]

    Juan Wang, Yi-Jie Gu, Wen-Li Kong, et al. Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4[J]. Solid State Ionics, 2018, 327:11-17. doi: 10.1016/j.ssi.2018.10.015

    [18]

    JunkeOu, Lin Yang, Feng Jin, et al. High performance of LiFePO4 with nitrogen-doped carbon layers for lithium ion batteries[J]. Advanced Powder Technology, 2020.

    [19]

    Xufeng Wang, Zhijun Feng, Xiaolong Hou, et al. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithiumion batteries[J]. Chemical Engineering Journal, 2020.

    [20]

    T D Dong, X Wang, K C Zhu. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries[J]. Applied Surface Science, 2016, 390:481-488. doi: 10.1016/j.apsusc.2016.08.066

    [21]

    Yanshuang Meng, Yuzhu Li, Jun Xia, et al. F-doped LiFePO4@N/B/F-doped carbon as high performance cathode materials for Li-ion batteries[J]. Applied Surface Science, 2019, 476:761-768. doi: 10.1016/j.apsusc.2019.01.139

    [22]

    Yuan Gao, Kun Xiong, Hui Xu, et al. Enhanced high-rate and low-temperature electrochemical properties of LiFePO4/ polypyrrole cathode materials for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2019, 14:3408-3417.

    [23]

    Wélique Silva Fagundes, Farlon Felipe Silva Xavier, LaianeKalita Santana, et al. PAni-coated LiFePO4 synthesized by a low temperature solvothermal method [J]. Materials Research, 2019, 22(1).

    [24]

    Wenyuan Duan, Mingshu Zhao, Yusuke Mizuta, et al. Superior electrochemical performance of a novel composite LiFePO4/C/CNTs for the aqueous rechargeable lithium-ion battery[J]. Physical Chemistry Chemical Physics, 2020.

    [25]

    Zhaoyong Chen, Zeng Zhang, Qunfang Zhao, et al. Understanding the impact of K-doping on the structure and performance of LiFePO4/C cathode materials[J]. Journal of Nanoscience and Nanotechnology, 2019, 19:119-124. doi: 10.1166/jnn.2019.16449

    [26]

    Ian D. Johnson, Ekaterina Blagovidova, Paul A Dingwall, et al. High power Nb-doped LiFePO4 Li-ion battery cathodes; pilot-scale synthesis and electrochemical properties[J]. Journal of Power Sources, 2016, 326:476-481. doi: 10.1016/j.jpowsour.2016.06.128

    [27]

    Shanshan Jiang, Yuansheng Wang. Synthesis and characterization of vanadium-doped LiFePO4@C electrode with excellent rate capability for lithium-ion batteries[J]. Solid State Ionics, 2019, 335:97-102. doi: 10.1016/j.ssi.2019.03.002

    [28]

    Huan Liu, Shao-hua Luo, Sheng-xue Yan, et al. A novel and low-cost iron source for synthesizing Cl-doped LiFePO4/C cathode materials for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2019:850.

    [29]

    Baofeng Zhang, Youlong Xu, Jie Wang, et al. Lanthanum and cerium Co-doped LiFePO4: morphology, electrochemical performance and kinetic study from -30℃-+50℃[J]. Electrochimica Acta, 2019:322.

    [30]

    Yi-juLv, Bin Huang, Jia-xu Tan, et al. Enhanced low temperature electrochemical performances of LiFePO4/C by V3+ and F- co-doping[J]. Materials Letters, 2018, 229:349-352. doi: 10.1016/j.matlet.2018.07.049

    [31]

    Xuetian Li, Lina Yu, Yonghui Cui, et al. Enhanced properties of LiFePO4/C cathode materials co-doped with V and F ions via high temperature ball milling route[J]. International Journal of Hydrogen Energy, 2019, 44(50):27204-27213. doi: 10.1016/j.ijhydene.2019.08.187

    [32]

    Libin Gao, Zhengrui Xu, Shu Zhang. The co-doping effects of Zr and Co on structure and electrochemical properties of LiFePO4 cathode materials[J]. Journal of Alloys and Compounds, 2018, 739:529-535. doi: 10.1016/j.jallcom.2017.12.313

  • 加载中
计量
  • 文章访问数:  1882
  • PDF下载数:  155
  • 施引文献:  0
出版历程
收稿日期:  2021-04-12
刊出日期:  2022-06-25

目录