-
摘要:
为了提高酸浸钒渣的利用效率,以商洛千家坪钒渣为主要原料,添加黏土和粉煤灰制备建筑用烧结陶粒。对陶粒制备过程中各物料的配比、制粒工艺参数、预热和焙烧制度进行了系统研究。结果表明,物料配比为钒渣∶粘土∶粉煤灰=6∶1∶3、制粒用水量为18%、制粒时间为15 min、预热温度为400℃、预热时间为30 min、焙烧温度为1160℃、焙烧时间为20 min的条件下,可制得筒压强度为11.58 MPa,堆积密度为1014.7 kg/m3,吸水率为5.61%的高强陶粒。SEM和XRD分析结果表明,钒渣在烧结成陶粒的过程中主要产生了石英、斜长石和钾长石相,形成了结构致密、孔骨架良好的矿物集合体,因此提高了陶粒的强度。
Abstract:In order to improve the utilization efficiency of acid leaching vanadium tailing, the sintered ceramsite for building was prepared by adding clay and fly ash with Shangluo Qianjiaping vanadium tailing as the main raw material. The proportion of materials, the parameters of granulation process, the preheating and roasting conditions in the preparation of ceramsite were systematically studied. The results show that when the ratio of vanadium tailing, clay and fly ash is 6:1:3, granulating water granulation water consumption is 18%, granulation time is 15 min, preheating temperature is 400℃, preheating time is 30 min, roasting temperature is 1160℃, roasting time is 20 min, the high strength ceramsite with compression strength of 11.58 Mpa, packing density of 1014.7 kg/m3 and water absorption of 5.61% can be obtained. SEM and XRD analysis indicate that in the process of ceramsite synthesis, quartz, anorthite and albite phases has been generated and formed mineral aggregates with compact structure and good pore skeleton, thus increasing the strength of ceramsite.
-
Key words:
- Acid leaching vanadium tailing /
- Sintering /
- Ceramsite /
- High strength
-
-
表 1 制陶粒原料的主要成分/%
Table 1. Chemical composition of the raw material for ceramsite
原料 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O LOI 钒渣 76.70 1.12 1.16 4.18 0.28 0.46 0.19 6.18 粘土 57.52 13.06 6.81 1.58 1.90 2.81 1.02 10.04 粉煤灰 44.90 28.10 7. 8 5.82 1.04 0.81 0.16 4.55 表 2 制陶粒原料的配比方案
Table 2. Proportional programme of raw materials for ceramsite
配比编号 T1 T2 T3 T4 T5 T6 钒渣/% 40 50 60 65 70 80 粘土/% 30 20 10 5 10 0 粉煤灰/% 30 30 30 30 20 20 表 3 不同用水量下生球的性能
Table 3. Performance of raw balls at different water consumption
用水量/% 落下次数/次 现象 15 0~1 生球表面粗糙,松散易碎 17 1~2 生球表面粗糙,滚动易碎 18 7~8 生球表面光滑,硬度大 19 不适宜 物料粘接严重,水分析出 表 4 不同制粒时间下生球落下强度
Table 4. Drop strength of raw balls at different granulation time
制粒时间/min 5 10 15 20 落下次数/次 3~5 7~8 10~11 7~8 -
[1] 张成强, 孙传尧, 印万忠, 等. 以氟化钙为助浸剂的某伊利石型含钒石煤提钒工艺[J]. 矿产综合利用, 2019(5):42-47. doi: 10.3969/j.issn.1000-6532.2019.05.009
ZHANG C Q, SUN C Y, YIN W Z, et al. Acid leaching of vanadium from an illite-type vanadium- containing stone using calcium fluoride as aid-leaching reagent[J]. Multipurpose Utilization of Mineral Resources, 2019(5):42-47. doi: 10.3969/j.issn.1000-6532.2019.05.009
[2] 赵备备, 李兰杰, 柳林, 等. 废钒触媒提钒工艺[J]. 矿产综合利用, 2019(6):81-84.
ZHAO B B, LI L J, LIU L, et al. Study on the vanadium extraction process of spent vanadium catalyst[J]. Multipurpose Utilization of Mineral Resources, 2019(6):81-84.
[3] 徐正震, 梁精龙, 李慧, 等. 含钒废弃物中钒的回收研究现状及展望[J]. 矿产综合利用, 2020(3):8-13. doi: 10.3969/j.issn.1000-6532.2020.03.002
XU Z Z, LIANG J L, LI H, et al. Research status and prospects of vanadium recovery in vanadium containing wastes[J]. Multipurpose Utilization of Mineral Resources, 2020(3):8-13. doi: 10.3969/j.issn.1000-6532.2020.03.002
[4] 李秀敏, 张一敏, 黄晶, 等. 利用攀钢提钒尾渣制备富钒渣的研究[J]. 矿冶工程, 2013, 33(5):111-114. doi: 10.3969/j.issn.0253-6099.2013.05.028
LI X M, ZHANG Y M, HUANG J, et al. Research on the preparation of vanadium-rich slag from Panzhihua Iron and Steel's vanadium extraction tailings[J]. Mining and Metallurgical Engineering, 2013, 33(5):111-114. doi: 10.3969/j.issn.0253-6099.2013.05.028
[5] 李杨, 孟凡涛, 王鹏, 等. 黄金尾矿制备轻质高强陶粒的工艺研究[J]. 人工晶体学报, 2018, 47(8):1554-1559. doi: 10.3969/j.issn.1000-985X.2018.08.010
LI Y, MENG F T, WANG P, et al. Study on the technology of preparing light high-strength ceramsite from gold tailings[J]. Journal of Synthetic Crystals, 2018, 47(8):1554-1559. doi: 10.3969/j.issn.1000-985X.2018.08.010
[6] 魏莹, 王永安. 硅线石尾矿陶粒制备加气混凝土砌块的研究[J]. 硅酸盐通报, 2018, 37(7):2336-2340.
WEI Y, WANG Y A. Study on the preparation of aerated concrete blocks from sillimanite tailings ceramsite[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(7):2336-2340.
[7] 易龙生, 何磊, 王泽祥. 铅锌尾矿的资源化利用[J]. 矿产综合利用, 2017(1):12-15. doi: 10.3969/j.issn.1000-6532.2017.01.003
YI L S, HE L, WANG Z X. Resource utilization of lead-zinc tailings[J]. Multipurpose Utilization of Mineral Resources, 2017(1):12-15. doi: 10.3969/j.issn.1000-6532.2017.01.003
[8] 朱思铭, 黎强. 免烘干脱水污泥制备陶粒的试验研究[J]. 西南师范大学学报(自然科学版), 2019, 44(12):77-82.
ZHU S M, LI Q. Experimental study on preparation of ceramsite without drying dewatered sludge[J]. Journal of Southwest China Normal University (Natural Science Edition), 2019, 44(12):77-82.
[9] Wang Z, Chen H J, Yu C H, et al. Utilizing Iron Tailing, Sludge and Fly Ash to Prepare Ceramsites, 2020, 13(1): 16-25.
[10] 李彬, 赵明星, 代雨勃, 等. 膨润土尾矿复合陶粒制备与Cr(Ⅵ)吸附性能[J]. 矿物学报, 2019, 39(2):211-218.
LI B, ZHAO M X, DAI Y B, et al. Preparation of bentonite tailings composite ceramsite and Cr(Ⅵ) adsorption performance[J]. Acta Minera Sinica, 2019, 39(2):211-218.
[11] 朱富杰, 张砚, 周烁, 等. 白泥超轻陶粒的制备与性能研究[J]. 矿物学报, 2019, 38(39):1-10.
ZHU F J, ZHANG Y, ZHOU S, et al. Study on the preparation and properties of ultra-light white clay ceramsite[J]. Acta Mineralogica Sinica, 2019, 38(39):1-10.
-