响应曲面法优化铅转炉灰的砷浸出过程

王焕龙, 焦芬, 刘维, 韩俊伟, 李文华, 覃文庆. 响应曲面法优化铅转炉灰的砷浸出过程[J]. 矿产综合利用, 2022, 43(3): 181-187. doi: 10.3969/j.issn.1000-6532.2022.03.032
引用本文: 王焕龙, 焦芬, 刘维, 韩俊伟, 李文华, 覃文庆. 响应曲面法优化铅转炉灰的砷浸出过程[J]. 矿产综合利用, 2022, 43(3): 181-187. doi: 10.3969/j.issn.1000-6532.2022.03.032
Wang Huanlong, Jiao Fen, Liu Wei, Han Junwei, Li Wenhua, Qin Wenqing. Optimization of Arsenic Leaching From Lead Converter Ash by Response Surface Methodology[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 181-187. doi: 10.3969/j.issn.1000-6532.2022.03.032
Citation: Wang Huanlong, Jiao Fen, Liu Wei, Han Junwei, Li Wenhua, Qin Wenqing. Optimization of Arsenic Leaching From Lead Converter Ash by Response Surface Methodology[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 181-187. doi: 10.3969/j.issn.1000-6532.2022.03.032

响应曲面法优化铅转炉灰的砷浸出过程

详细信息
    作者简介: 王焕龙(1997-),男, 硕士,研究方向为再生资源高效清洁利用
    通讯作者: 焦芬(1983-),女,教授, 研究方向为再生资源高效清洁利用
  • 中图分类号: TD989

Optimization of Arsenic Leaching From Lead Converter Ash by Response Surface Methodology

More Information
  • 以硫酸为浸出介质,通过响应面方法和Box-Behnken设计(BBD)对浸出条件,包括酸浓度、液固比和温度进行优化。结果表明,酸浓度是最重要的因素,其次是温度和液固比。通过响应面优化,确定在酸浓度为116.77 g/L,液固比为8,温度为170℃的较佳工艺条件下,铜转炉灰中砷的提取率达到94.49%,说明响应面方法可以成功优化铅转炉砷灰的酸提取实验。

  • 加载中
  • 图 1  As-H2O系统E-pH

    Figure 1. 

    图 2  不同浸出条件对砷提取的影响

    Figure 2. 

    图 3  酸浓度100 g/L时,砷浸出率随温度和液固比变化的响应

    Figure 3. 

    图 4  170℃时砷浸出率对酸浓度和温度的响应

    Figure 4. 

    图 5  液固比8时砷浸出率对酸浓度和温度的响应

    Figure 5. 

    图 6  浸出矿渣XRD

    Figure 6. 

    图 7  含砷净化渣的SEM-EDS分析

    Figure 7. 

    表 1  高砷铅冶炼粉尘的主要化学成分/%

    Table 1.  Main chemical composition of high arsenic lead smelting dust

    AsPbCdSbS
    34.2011.106.637.363.28
    下载: 导出CSV

    表 2  酸浸响应曲面分析结果

    Table 2.  Analysis results of acid leaching response surface

    编号因素砷浸出率/%
    T/
    (S/L)/

    ( g·mL-1
    [H2SO4]/

    ( g·L-1
    1130410066.17
    2170410077.35
    3130810079.07
    4170810091.61
    513068058.06
    617068071.35
    7130612077.65
    8170612091.42
    915048059.06
    1015088071.25
    11150412078.63
    12150812086.07
    13150610079.49
    14150610079.96
    15150610079.58
    下载: 导出CSV

    表 3  酸浸过程中各模型的回归系数

    Table 3.  Regression coefficients of each model during acid leaching

    参数DFAdj SSAdj MSF -valueP -value
    模型 9 0.137905 0.015323 63.65 0.000
    线性 3 0.128149 0.042716 177.43 0.000
    温度 1 0.032230 0.032230 133.87 0.000
    液固比 1 0.027378 0.027378 113.72 0.000
    酸度 1 0.068541 0.068541 284.70 0.000
    平方 3 0.009142 0.003047 12.66 0.009
    温度*温度 1 0.000006 0.000006 0.03 0.879
    液固比*液固比 1 0.000366 0.000366 1.52 0.272
    酸度*酸度 1 0.008969 0.008969 37.25 0.002
    两种因素交互 3 0.000614 0.000205 0.85 0.523
    温度*液固比 1 0.000046 0.000046 0.19 0.680
    温度*酸度 1 0.000006 0.000006 0.02 0.882
    液固比*酸度 1 0.000562 0.000562 2.34 0.187
    误差 5 0.001204 0.000241
    失拟 3 0.001192 0.000397 64.95 0.015
    纯差
    总计
    2
    14
    0.000012
    0.139109
    0.000006


    DF-自由度; adj SS-调整后的方差之和; adj MS-调整后的均方差
    下载: 导出CSV

    表 4  浸出渣主要元素化学成分/.%

    Table 4.  Chemical composition of main elements of leaching residue

    AsPbCdSb
    4.678.184.206.37
    下载: 导出CSV
  • [1]

    H L Steven, J B Isabella, F Hamid, et al. A review of low-dose arsenic risks and human cancers[J]. Toxicology, 2021, 5(456):1-17.

    [2]

    W Yan, Y Jianglong, W Zhihua, et al. A review on arsenic removal from coal combustion: Advances, challenges and opportunities[J]. Chemical Engineering Journal, 2021, 6(414):1-18.

    [3]

    Wenjuan Zhang, Jianyong Che, Liu Xia, et al. Efficient removal and recovery of arsenic from copper smelting flue dust by a roasting method: process optimization, phase transformation and mechanism investigation[J]. Journal of Hazardous Materials, 2021, 6(412):1-13.

    [4]

    Lei Zhang, Xueyi Guo, Qinghua Tian, et al. Selective removal of arsenic from high arsenic dust in the NaOH-S system and leaching behavior of lead, antimony, zinc and tin[J]. Hydrometallurgy, 2021, 6(202):1-10.

    [5]

    Erjun Zhang, Kanggen Zhou, Wei Chen, et al. Separation of As and Bi and enrichment of As, Cu, and Zn from copper dust using an oxidation-leaching approach[J]. Chinese Journal of Chemical Engineering, 2021, 4(1):1-7.

    [6]

    Yang Kang, Liu Wei, Zhang Tianfu, et al. Water leaching of arsenic trioxide from metallurgical dust with emphasis on its kinetics[J]. Journal of Central South University, 2019, 26(9):2328-2339. doi: 10.1007/s11771-019-4177-5

    [7]

    Liu Wei, Chang Huang, Junwei Han, et al. Removal and reuse of arsenic from arsenic-bearing purified residue by alkaline pressure oxidative leaching and reduction of As (V)[J]. Hydrometallurgy, 2021(199):105541.

    [8]

    信晓飞, 张晋霞, 冯洪均. 响应曲面法优化含锌尘泥选择性浸出工艺[J]. 矿产综合利用, 2021(2):146-151. doi: 10.3969/j.issn.1000-6532.2021.02.025

    XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral Resources, 2021(2):146-151. doi: 10.3969/j.issn.1000-6532.2021.02.025

    [9]

    方楠, 吴健, 何强, 等. 响应面法优化铁尾矿砂对铜(II)的吸附条件[J]. 矿产综合利用, 2020(1):140-145. doi: 10.3969/j.issn.1000-6532.2020.01.029

    FANG N, WU J, HE Q, et al. Optimization of adsorption conditions of copper (II) on ferrous mill tailings by response surface methodology[J]. Multipurpose Utilization of Mineral Resources, 2020(1):140-145. doi: 10.3969/j.issn.1000-6532.2020.01.029

    [10]

    周庆立, 白丽梅, 马玉新, 等. 响应曲面法优化振动磨磨矿工艺参数试验研究[J]. 矿产综合利用, 2020(5):203-208. doi: 10.3969/j.issn.1000-6532.2020.05.032

    ZHOU Q L, BAI L M, MA Y X, et al. Experimental study on optimization of vibration grinding parameters by response surface method[J]. Multipurpose Utilization of Mineral Resources, 2020(5):203-208. doi: 10.3969/j.issn.1000-6532.2020.05.032

    [11]

    马爱元, 郑雪梅, 李松, 等. 响应曲面优化NH3-(NH4)3AC-H2O 体系浸出冶金废渣提锌工艺研究[J]. 矿产综合利用, 2021(1):186-192. doi: 10.3969/j.issn.1000-6532.2021.01.031

    MA A Y, ZHENG X M, LI S, et al. Study on zinc extraction process of NH3-(NH4)3AC-H2O system by response surface optimization[J]. Multipurpose Utilization of Mineral Resources, 2021(1):186-192. doi: 10.3969/j.issn.1000-6532.2021.01.031

    [12]

    V Panwar, D K Sharma, K V Pradeep Kumar, et al. Experimental investigations and optimization of surface roughness in turning of en 36 alloy steel using response surface methodology and genetic algorithm[J]. Materials today: Proceedings, 2021, 4(19).

    [13]

    Wei Liu, Wenhua Li, Junwei Han, et al. Preparation of calcium stannate from lead refining slag by alkaline leaching purification-causticization process[J]. Separation and Purification Technology, 2019(212): 119-125.

    [14]

    C P Lawagon, G M Nisola, R A I Cuevas, et al. Li1−xNi0.5Mn1.5O4/Ag for electrochemical lithium recovery from brine and its optimized performance via response surface methodology[J]. Separation and Purification Technology, 2019, 4(212):416-426.

  • 加载中

(7)

(4)

计量
  • 文章访问数:  314
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2021-09-07
刊出日期:  2022-06-25

目录