内蒙古某复杂多金属铅铜锌硫化矿选矿工艺研究

王刚, 于云龙, 马波, 王倩, 曹欢. 内蒙古某复杂多金属铅铜锌硫化矿选矿工艺研究[J]. 矿产综合利用, 2022, 43(3): 172-180. doi: 10.3969/j.issn.1000-6532.2022.03.031
引用本文: 王刚, 于云龙, 马波, 王倩, 曹欢. 内蒙古某复杂多金属铅铜锌硫化矿选矿工艺研究[J]. 矿产综合利用, 2022, 43(3): 172-180. doi: 10.3969/j.issn.1000-6532.2022.03.031
Wang Gang, Yu Yunlong, Ma Bo, Wang Qian, Cao Huan. Study on Mineral Processing Technology of Complex Polymetallic Lead-Copper-Zinc Sulfide Ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 172-180. doi: 10.3969/j.issn.1000-6532.2022.03.031
Citation: Wang Gang, Yu Yunlong, Ma Bo, Wang Qian, Cao Huan. Study on Mineral Processing Technology of Complex Polymetallic Lead-Copper-Zinc Sulfide Ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 172-180. doi: 10.3969/j.issn.1000-6532.2022.03.031

内蒙古某复杂多金属铅铜锌硫化矿选矿工艺研究

详细信息
    作者简介: 王刚(1994-),男,工程师,主要从事稀贵金属提取分离研究。
  • 中图分类号: TD952

Study on Mineral Processing Technology of Complex Polymetallic Lead-Copper-Zinc Sulfide Ores from Inner Mongolia

  • 对内蒙古某复杂多金属铅铜锌矿进行了工艺矿物学和选矿工艺研究。结果表明,矿石中有价元素为Cu、Pb、Zn、Ag,铜铅锌各矿物间相互交代、包裹,其中方铅矿与黄铜矿为包裹关系,且被包裹的方铅矿粒度不均匀;方铅矿与闪锌矿多为连生关系,两者之间接触面比较光滑平直,较容易解离,银矿物则共伴生于这些金属矿物之中,因此采用铜铅混浮-铜铅分离-尾矿选锌的工艺流程。最后共获得3种精矿产品,铜精矿中Cu、Ag品位分别为18.41%、594.82 g/t,回收率分别为86.53%、25.30%;铅精矿中Pb、Ag品位分别为 62.70%、428.05 g/t,回收率分别为85.01%、54.62%;锌精矿中Zn、Ag品位分别为28.12%、165.75 g/t,回收率分别为59.99%、4.80%;银总回收率达到84.72%,实现了矿石中有价元素的综合回收。

  • 加载中
  • 图 1  单因素条件实验流程

    Figure 1. 

    图 2  磨矿细度对铜铅锌浮选的影响

    Figure 2. 

    图 3  CaO用量对铜铅锌浮选的影响

    Figure 3. 

    图 4  ZnSO4用量对铜铅锌浮选的影响

    Figure 4. 

    图 5  Na2SO3 用量对铜铅锌浮选回收率和品位的影响

    Figure 5. 

    图 6  铜铅分离实验流程

    Figure 6. 

    图 7  铜铅混合浮选尾矿选锌开路实验流程

    Figure 7. 

    图 8  浮选闭路实验流程

    Figure 8. 

    表 1  矿石组成成分、含量及其粒度

    Table 1.  Mineral composition, content, and dissemination size of the raw ore

    矿物名称含量/%粒度/μm
    方铅矿 2.3 10~200
    闪锌矿 0.5 -
    黄铜矿 0.4 <500
    磁黄铁矿 18.3 20~700
    黄铁矿 0.8 <300
    褐铁矿 0.1 -
    石英 58.7 15~200
    白云母 8.2 20×1~200×50
    碳酸盐矿物 9.9 <0.4
    下载: 导出CSV

    表 2  原矿化学多元素分析结果/%

    Table 2.  Analysis results of multi-elements of the raw ore

    CuTFemFeSMgOAg*MnCoAs
    0.2012.427.983.510.4022.100.100.00760.076
    NiSiO2ZnPPbAu*Al2O3CaOW
    0.0267.550.300.362.080.103.641.370.05
    *单位为g/t。
    下载: 导出CSV

    表 3  铜物相分析结果

    Table 3.  Results of Cu phase analysis

    矿物名称硫化物中铜次生硫化物中铜结合氧化铜中铜自由氧化物中铜合计
    含量/%0.160.0370.00150.00150.20
    分布率/%79.7518.410.920.92100.00
    下载: 导出CSV

    表 4  铅物相分析结果

    Table 4.  Results of Pb phase analysis

    矿物名称氧化物中铅硫化物中铅结合铅中铅合计
    含量/%0.091.850.142.08
    分布率/%4.2789.026.71100.00
    下载: 导出CSV

    表 5  捕收剂种类及用量实验结果

    Table 5.  Test results of collector types and dosage

    捕收剂种类及用量/(g·t-1产率
    /%
    品位/%回收率/%
    CuPbZnCuPbZn
    乙硫氮30 乙黄药309.201.8219.670.4788.1388.2814.91
    乙硫氮30 丁黄药309.051.9520.360.5288.5088.6115.64
    丁胺黑药30 乙黄药3011.901.4514.990.8586.5785.7533.72
    丁胺黑药30 丁黄药3010.601.6516.860.7187.4785.9325.09
    下载: 导出CSV

    表 6  铜铅分离抑制剂用量实验结果

    Table 6.  Test results of copper-lead separation inhibitor dosage

    抑制剂CMC+Na2SO3(1:2)用量/(g·t-1产品名称产率/%品位/%作业回收率/%
    CuPbZnCuPbZn
    0铜精矿55.706.6531.220.3289.9567.9024.39
    铅精矿44.300.9318.561.2310.0532.1075.61
    150铜精矿42.038.9335.850.4191.1058.8323.93
    铅精矿57.970.6518.050.939.9041.1776.07
    250铜精矿32.8411.4919.530.4791.5825.0421.43
    铅精矿67.160.5628.600.869.4274.9679.57
    350铜精矿30.9112.1424.470.5291.0828.8422.32
    铅精矿69.090.4826.210.819.9271.1677.68
    下载: 导出CSV

    表 7  铜铅混合浮选尾矿选锌开路实验结果

    Table 7.  Open-circuit flotation test results of zinc separation from Cu-Pb flotation tailings

    产品名称产率
    /%
    品位/%回收率/%
    CuPbZnCuPbZn
    锌精矿 0.59 0.16 0.58 27.33 3.79 1.32 57.85
    精1尾 3.61 0.05 0.37 0.63 7.23 5.14 8.12
    精2尾 3.49 0.03 0.43 0.56 4.19 5.77 6.98
    精3尾 1.19 0.08 0.51 2.96 3.79 2.33 12.53
    扫1精 1.06 0.21 1.41 0.44 8.94 5.76 1.66
    尾 矿 90.06 0.02 0.23 0.04 72.06 79.68 12.86
    铜锌混合浮选尾矿 100 0.025 0.26 0.28 100.00 100.00 100.00
    下载: 导出CSV

    表 8  闭路实验结果

    Table 8.  Results of a closed-circuit flotation test

    产 品
    名 称
    产率
    /%
    品位/%回收率/%
    CuPbZnAg*CuPbZnAg
    铜精矿 0.94 18.41 4.05 0.95 594.82 86.53 1.83 2.98 25.30
    铅精矿 2.82 0.28 62.70 0.53 428.05 3.95 85.01 4.98 54.62
    锌精矿 0.64 0.21 1.37 28.12 165.75 0.67 0.42 59.99 4.80
    尾矿 95.60 0.02 0.28 0.10 3.53 8.85 12.74 32.05 15.28
    原矿 100.00 0.20 2.08 0.30 22.10 100.00 100.00 100.00 100.00
    *单位为:g/t。
    下载: 导出CSV
  • [1]

    逄文好, 刘全军, 丁鹏. 新疆铜锌硫混合精矿分离试验研究[J]. 矿冶, 2014, 23(5):27-30. doi: 10.3969/j.issn.1005-7854.2014.05.008

    PANG W H, LIU Q J, DING P. Experimental research on separation of Xinjiang copper, zinc and sulfur mixed concentrate[J]. Mining and Metallurgy, 2014, 23(5):27-30. doi: 10.3969/j.issn.1005-7854.2014.05.008

    [2]

    肖炜, 田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    [3]

    毕克俊, 方建军, 张琳, 等. 云南某低品位铅锌硫化矿选矿工艺[J]. 过程工程学报, 2016, 16(1):99-104. doi: 10.12034/j.issn.1009-606X.215342

    BI K J, FANG J J, ZHANG L, et al. Beneficiation process of a low-grade lead-zinc sulfide ore in Yunnan[J]. The Chinese Journal of Process Engineering, 2016, 16(1):99-104. doi: 10.12034/j.issn.1009-606X.215342

    [4]

    黎维中. 难处理铅锌银硫化矿物资源综合回收的研究与实践[D]. 长沙: 中南大学, 2007.

    LI W Z. Research and practice on comprehensive recovery of refractory lead-zinc-silver sulfide mineral resources[D]. Changsha: Central South University, 2007.

    [5]

    王衡嵩, 魏志聪, 曾明, 等. 铜锌矿物分离中闪锌矿抑制剂的作用机理研究进展[J]. 矿产保护与利用, 2019, 39(2):124-130.

    WANG H S, WEI Z C, ZENG M, et al. Research progress on the action mechanism of sphalerite inhibitors in the separation of copper-zinc minerals[J]. Mineral Resources Conservation and Utilization, 2019, 39(2):124-130.

    [6]

    尧章伟, 方建军, 代宗, 等. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿冶, 2018, 27(4):16-21. doi: 10.3969/j.issn.1005-7854.2018.04.004

    YAO Z W, FANG J J, DAI Z, et al. The mechanism and research progress of zinc blende inhibitor[J]. Mining and Metallurgy, 2018, 27(4):16-21. doi: 10.3969/j.issn.1005-7854.2018.04.004

    [7]

    苏建芳. 异极性巯基浮选捕收剂在方铅矿表面的吸附行为及机理研究[D]. 长沙: 中南大学, 2012.

    SU J F. Study on the adsorption behavior and mechanism of heteropolar sulfhydryl flotation collectors on galena surface [D]. Changsha: Central South University, 2012.

    [8]

    曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12):1589-1594.

    CAO F, SUN C Y, WANG H J, et al. The influence of hydrocarbon-based structure on the flotation performance of xanthate collector[J]. Journal of University of Science and Technology Beijing, 2014, 36(12):1589-1594.

    [9]

    管晓颖. 铜钼矿浮选分离多因素交互影响研究[D]. 北京: 北京有色金属研究总院, 2016.

    GUAN X Y. Study on the interaction of multiple factors in the flotation separation of copper-molybdenum ore[D]. Beijing: Beijing Research Institute of Nonferrous Metals, 2016.

    [10]

    曾慰华, 姚亚萍, 奚长生, 等. 某难选铜铅混合精矿的分离试验研究[J]. 金属矿山, 2006(4): 19-22

    ZENG W H, YAO Y P, XI C S, et al. Separation test study of a hard-to-select copper-lead mixed concentrate [J]. Metal Mine, 2006(4): 19-22

    [11]

    米丽平, 孙春宝, 李青, 等. 用组合抑制剂实现铜铅高效分离的试验研究[J]. 金属矿山, 2009, 39(8):53-56. doi: 10.3321/j.issn:1001-1250.2009.08.015

    MI L P, SUN C B, LI Q, et al. Experimental study on high-efficiency separation of copper and lead with combined inhibitors[J]. Metal Mine, 2009, 39(8):53-56. doi: 10.3321/j.issn:1001-1250.2009.08.015

  • 加载中

(8)

(8)

计量
  • 文章访问数:  725
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2020-07-13
刊出日期:  2022-06-25

目录