全球钴矿产的供应安全与技术创新

张惠, 吴西顺, 杨添天, 孙张涛. 全球钴矿产的供应安全与技术创新[J]. 矿产综合利用, 2022, 43(4): 134-142. doi: 10.3969/j.issn.1000-6532.2022.04.024
引用本文: 张惠, 吴西顺, 杨添天, 孙张涛. 全球钴矿产的供应安全与技术创新[J]. 矿产综合利用, 2022, 43(4): 134-142. doi: 10.3969/j.issn.1000-6532.2022.04.024
ZHANG Hui, Wu Xishun, Yang Tiantian, Sun Zhangtao. Supply Security and Technological Innovation of Global Cobalt Minerals[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(4): 134-142. doi: 10.3969/j.issn.1000-6532.2022.04.024
Citation: ZHANG Hui, Wu Xishun, Yang Tiantian, Sun Zhangtao. Supply Security and Technological Innovation of Global Cobalt Minerals[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(4): 134-142. doi: 10.3969/j.issn.1000-6532.2022.04.024

全球钴矿产的供应安全与技术创新

  • 基金项目: 中国地质调查项目“地学文献信息更新与服务”(DD20190413);“战略性矿产资源勘查开发科技跟踪” (DD20211407)
详细信息
    作者简介: 张惠(1973–),女,硕士,副研究员,主要从事矿产资源管理、国土资源经济、地学文献资源咨询服务的科学研究工作
    通讯作者: 吴西顺(1975–),男,博士,副研究员,现主要从事矿产资源、矿业科技、非常规能源、海洋地质和产业政策的科学研究工作
  • 中图分类号: TD353

Supply Security and Technological Innovation of Global Cobalt Minerals

More Information
  • 世界范围内的钴矿贸易和供应链危机已经引起很多国家和机构的关注,以致被纳入主要国家的关键矿产系列或清单当中。世界上的钴资源储量巨大,但产量有限且有地缘政治风险。这主要表现为钴矿产资源的生产、加工和消费的高度集中。除海底钴矿以外,陆地钴资源主要赋存在:沉积型铜钴矿床(约58%),主要位于刚果民主共和国和赞比亚;红土型镍钴矿床(约29%)主要是澳大利亚、新喀里多尼亚和古巴;岩浆型镍铜-PGE-钴矿床(约9%),主要是澳大利亚、加拿大、俄罗斯、芬兰和美国。全球钴精矿的产量60%以上在刚果(金)。而钴矿的精炼加工60%以上在中国,精炼钴消费60%以上在中国、欧盟和美国,中国、英国、日本的进口依赖度近乎百分百。形势严峻,竞争激烈,技术创新势在必行。新的技术正在逐渐得到应用,如选冶联合工艺以及一些新的提取方式。主要挑战是钴矿石回收率的提高、二次资源利用和产品回收利用方面。中国的许多部门、机构和企业也都进行了长期深入的工作部署,但在国际上的影响力和供应链的控制力仍比较小,与发达国家相比有很大差距。我国的钴矿供应安全也极其重要,其原材料供应和西方国家形成很强的竞争性。提高钴供应的安全程度,需要全面掌握几种主要资源的赋存特征、大力开展采选冶技术创新和高标准高质量进行产业创新,同时应高度重视推动国际产业联盟和技术合作,以应对国际产业链重构和竞争格局变化。

  • 加载中
  • 图 1  1900~2019世界钴矿石年产量和价格走势[3]

    Figure 1. 

    图 2  不同钴工艺能耗比较

    Figure 2. 

    表 1  国际富钴SSH尾矿再加工项目资源估算

    Table 1.  Resource estimation of the international cobalt-rich SSH tailings reprocessing project

    尾矿项目名称国家尾矿类型吨位/MtCo品位/%Co含量/kt公司状态
    Kamoto临时尾矿坝(KITD)刚果(金)浮选尾矿7.80.1612.48Katanga Mining ltd运营
    Etoile HMS尾矿刚果(金)重力分选
    HMS尾矿
    3.20.5116.05Shalina Resources运营
    Metalkol Roan尾矿再利用(RTR)刚果(金)浮选尾矿112.80.32360.96欧亚资源集团ERG运营
    Kipushi (Cu-Co & Zn-Co)尾矿刚果(金)浮选尾矿4.40.2310.37Cape Lambert Resources ltd规划
    Kakanda尾矿刚果(金)浮选尾矿18.50.15~27.75BeWhere Holdings Inc.规划
    Big Hill-Lubumbashi刚果(金)炉渣~4.5~2.1~94.5福勒斯特集团,Gecamine运营
    Kitwe – Nkana尾矿坝赞比亚炉渣~6.6~0.76-Cape Lambert Resources ltd规划
    Kasese尾矿乌干达浮选尾矿5.50.116.27卡塞塞钻公司终止
    下载: 导出CSV
  • [1]

    Gondia Sokhna Seck, Emmanuel Hache, Charlène Barnet. Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world[J]. Resources Policy, Vol75, 2022:102516.

    [2]

    Seddon M. The cobalt market—current volatility versus future stability?[J]. Applied Earth Science, 2001, 110:71-74. doi: 10.1179/aes.2001.110.2.71

    [3]

    Bartekov´a E, Kemp R. Critical raw material strategies in different world regions[R]. United Nations University, Maastricht Economic and social Research institute on Innovation and Technology. Working paper Series, 2016. #2016-005.

    [4]

    Slack J F, Kimball B E, Shedd K B. Cobalt. In: Schulz K J , DeYoung J H, Seal R R, Bradley D C (Eds. ), Critical mineral resources of the United States—economic and environmental geology and prospects for future supply reston[R], 2017: F1–F40.

    [5]

    余韵, 杨建锋. 中国战略性矿产地位和作用的变化——以钴为例[J]. 矿业研究与开发, 2020, 40(12):177-183. doi: 10.13827/j.cnki.kyyk.2020.12.033

    YU Y, YANG J F. Changes in the status and role of China's strategic minerals—taking cobalt as an example[J]. Mining Research and Development, 2020, 40(12):177-183. doi: 10.13827/j.cnki.kyyk.2020.12.033

    [6]

    Smith C G. Always the bridesmaid, never the bride: cobalt geology and resources[J]. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2001, 110:B75-B80. doi: 10.1179/aes.2001.110.2.75

    [7]

    Leblanc M, Billard P. Cobalt arsenide ore bodies related to an upper Proterozoic ophiolite: Bou Azzer (Morocco)[J]. Economic Geology, 1982.https://doi.org/10.2113/gsecongeo.77.1.162.

    [8]

    Croxford N J W. Cobalt mineralization at Mount Isa, Queensland, Australia, with references to Mount Cobalt[J]. Mineral Deposita, 1974, 9:105-115.

    [9]

    Crundwell F K, Moats M S, Ramachandran V, et al. Extraction of cobalt from nickel laterite and sulfide ores[M]. Elsevier, 2011: 365–376.

    [10]

    Fisher K G. Cobalt processing developments[C]. in: The Southern African Institute of Mining and Metallurgy 6th Southern African Base Metals Conference, 2011. 237–258.

    [11]

    Warner A E M, Díaz C M, Dalvi A D, et al. JOM world nonferrous smelter survey Part IV: Nickel: Sulfide[J]. JOM, 2007, 59:58-72.

    [12]

    Vernon P N, Burks S F. The application of Ausmelt technology to base metal smelting, now and in the future[J]. Journal of South African Institute Mineral Metallurgy, 1997, 97:89-98.

    [13]

    Huang K, Li Q, Chen J. Recovery of copper, nickel and cobalt from acidic pressure leaching solutions of low-grade sulfide flotation concentrates[J]. Minerals Engineering, 2007, 20:722-728. doi: 10.1016/j.mineng.2007.01.011

    [14]

    Mudd G M. Global trends and environmental issues in nickel mining: Sulfides versus laterites[J]. Ore Geological Review, 2010, 38:9-26. doi: 10.1016/j.oregeorev.2010.05.003

    [15]

    Riekkola-Vanhanen M. Talvivaara mining company - From a project to a mine[J]. Minerals Engineering, 2013, 48:2-9. doi: 10.1016/j.mineng.2013.04.018

    [16]

    Chaney R L, Angle J S, Baker A J M, et al. Method for phytomining of nickel, cobalt and other metals from soil[P]. US Patent 5711784 A, 1999.

    [17]

    Eckelman M J. Facility-level energy and greenhouse gas life-cycle assessment of the global nickel industry[J]. Resources Conservation Recycle, 2010, 54:256-266. doi: 10.1016/j.resconrec.2009.08.008

    [18]

    Schmidt T, Buchert M, Schebek L. Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries[J]. Resources Conservation Recycle, 2016, 112:107-122. doi: 10.1016/j.resconrec.2016.04.017

    [19]

    Norgate T, Jahanshahi S. Assessing the energy and greenhouse gas footprints of nickel laterite processing[J]. Minerals Engineering, 2011, 24:698-707. doi: 10.1016/j.mineng.2010.10.002

    [20]

    Norgate T, Jahanshahi S. Low grade ores – smelt, leach or concentrate[J]. Minerals Engineering, 2010, 23:65-73. doi: 10.1016/j.mineng.2009.10.002

    [21]

    Sun X, Hao H, Liu Z, et al. Tracing global cobalt flow: 1995–2015[J]. Resources Conservation Recycle, 2019, 149:45-55. doi: 10.1016/j.resconrec.2019.05.009

    [22]

    Sole K C. Copper solvent extraction: Status, operating practices, and challenges in the African Copperbelt[J]. Journal of South African Institute Mineral Metallurgy, 2016, 116:553-560. doi: 10.17159/2411-9717/2016/v116n6a10

    [23]

    Lee K, Archibald D, McLean J, et al. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors[J]. Minerals Engineering, 2009, 22:395-401. doi: 10.1016/j.mineng.2008.11.005

    [24]

    Shengo L M, Gaydardzhiev S, Kalenga N M. Assessment of water quality effects on flotation of copper-cobalt oxide ore[J]. Minerals Engineering, 2014, 65:145-148. doi: 10.1016/j.mineng.2014.06.005

    [25]

    Dehaine Q, Filippov L O, Glass H J, et al. Rare-metal granites as a potential source of critical metals: a geometallurgical case study[J]. Ore Geological Review, 2019, 104:384-402. doi: 10.1016/j.oregeorev.2018.11.012

    [26]

    吴西顺, 张炜, 杨添天, 等. 地质冶金学发展及对建设智慧矿山的意义[J]. 矿产综合利用, 2021(5):67-75. doi: 10.3969/j.issn.1000-6532.2021.05.010

    WU X S, ZHANG W, YANG T T, et al. Development of geometallurgy and its significance to the construction of wisdom mines[J]. Multipurpose Utilization of Mineral Resources, 2021(5):67-75. doi: 10.3969/j.issn.1000-6532.2021.05.010

    [27]

    Macfarlane, A S, Williams T P. Optimizing value on a copper mine by adopting a geometallurgical solution[J]. Journal of South African Institute Mineral Metallurgy, 2014, 114:929-936.

    [28]

    Shengo M L, Kime M B, Mambwe M P, et al. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo[J]. Journal of Sustainable Mining, 2019, 18:226-246. doi: 10.1016/j.jsm.2019.08.001

    [29]

    Harper, E M, Kavlak G, Graedel T E. Tracking the metal of the goblins: cobalt’s cycle of use[J]. Environment Science Technology, 2012, 46:1079-1086. doi: 10.1021/es201874e

    [30]

    Vel´azquez-Martínez O, Valio J, Santasalo- Aarnio, et al. A critical review of lithium-ion battery recycling processes from a circular economy perspective[J]. Batteries, 2019.https://doi.org/10.3390/batteries5040068.

    [31]

    吴西顺, 王蛟. 日本富钴结壳大比例尺填图对西太平洋勘探的启示[J]. 海洋地质前沿, 2015, 31(1):43-51. doi: 10.16028/j.1009-2722.2015.01007

    WU X S, WANG J. Enlightenment of large-scale mapping of cobalt-rich crusts in Japan for exploration in the Western Pacific[J]. Frontiers in Marine Geology, 2015, 31(1):43-51. doi: 10.16028/j.1009-2722.2015.01007

    [32]

    陈忠玉, 刘强, 江皇义, 等. 分级-反浮选-重选高效分选刚果(金)某氧化钴铜矿[J]. 矿产综合利用, 2021(4):170-175. doi: 10.3969/j.issn.1000-6532.2021.04.027

    CHEN Z Y, LIU Q, JIANG H Y, et al. Beneficiation treatment of a cobalt-copper mine in DRC by combined process of classification-reverse flotation-gravity separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):170-175. doi: 10.3969/j.issn.1000-6532.2021.04.027

  • 加载中

(2)

(1)

计量
  • 文章访问数:  1213
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2022-01-17
刊出日期:  2022-08-25

目录