以含碳固废为还原剂的铜渣颗粒直接还原正交实验

左宗良, 罗思义, 于庆波, 张敬奎. 以含碳固废为还原剂的铜渣颗粒直接还原正交实验[J]. 矿产综合利用, 2022, 43(5): 46-50. doi: 10.3969/j.issn.1000-6532.2022.05.009
引用本文: 左宗良, 罗思义, 于庆波, 张敬奎. 以含碳固废为还原剂的铜渣颗粒直接还原正交实验[J]. 矿产综合利用, 2022, 43(5): 46-50. doi: 10.3969/j.issn.1000-6532.2022.05.009
Zuo Zongliang, Luo Siyi, Yu Qingbo, Zhang Jingkui. Orthogonal Experiments of Copper Slag Particles Direct Reduction by Carbon-Containing Solid Waste Reductant[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 46-50. doi: 10.3969/j.issn.1000-6532.2022.05.009
Citation: Zuo Zongliang, Luo Siyi, Yu Qingbo, Zhang Jingkui. Orthogonal Experiments of Copper Slag Particles Direct Reduction by Carbon-Containing Solid Waste Reductant[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 46-50. doi: 10.3969/j.issn.1000-6532.2022.05.009

以含碳固废为还原剂的铜渣颗粒直接还原正交实验

  • 基金项目: 山东省自然科学基金青年基金(ZR2020QE150);山东省自然科学基金面上项目(ZR2019MEE015)
详细信息
    作者简介: 左宗良(1990-),男,副教授,研究方向为固废能源化利用
    通讯作者: 罗思义(1981-),男,教授,研究方向为生物质热化学转化
  • 中图分类号: TD982

Orthogonal Experiments of Copper Slag Particles Direct Reduction by Carbon-Containing Solid Waste Reductant

More Information
  • 通过转杯离心粒化法制备铜渣颗粒。以铜渣颗粒、碳质还原剂、粘结剂和造渣剂为主要原料制备铜渣含碳球团,在实验条件下,六种考查因素对铜渣含碳球团还原率影响的主次关系为:反应温度>造渣剂配比>气氛>还原剂种类>铜渣粒径>还原剂配比。通过极差分析得出铜渣含碳球团直接还原较佳还原条件:反应温度为1150℃,造渣剂配比(S/CaO)为1∶0.4,实验气氛为CO2(50%)N2(50%),还原剂为煤粉,铜渣粒径为+0.425 mm,还原剂配比(C/O)为1.2∶1,此时铜渣的还原率为98.2%。

  • 加载中
  • 图 1  铜渣X射线衍射

    Figure 1. 

    图 2  冷却后的铜渣颗粒

    Figure 2. 

    图 3  粘结剂配比对球团抗压强度的影响(煤粉)

    Figure 3. 

    表 1  铜渣化学成分/%

    Table 1.  Chemical composition of copper slag

    FeOFe3O4CaOAl2O3MFeSiO2CuMgOSZn其他
    37.5018.900.230.981.2431.990.740.420.392.784.87
    下载: 导出CSV

    表 2  还原剂工业分析/%

    Table 2.  Industrial analysis of reducing agents

    还原剂种类水分挥发分灰分固定碳
    煤粉6.5926.0534.4132.95
    煤焦0.221.4728.6169.7
    生物质3.9377.313.1315.63
    生物质碳0.446.7618.0774.73
    塑料焦0.110.928.690.37
    下载: 导出CSV

    表 3  实验工况

    Table 3.  Experimental conditions

    考查因素气氛(CO2/N2)反应温度/℃铜渣粒径/mm还原剂配比(C/O)造渣剂配比(S/CaO)还原剂种类
    1N2800-0.0740.8∶11∶0煤粉
    2CO2(25%)N2(75%)900-0.106+0.0740.9∶11∶0.1煤焦
    3CO2(50%)N2(50%)1000+0.711∶11∶0.2生物质
    4CO2(75%)N2(25%)1100-0.71+0.4251.1∶11∶0.3生物质碳
    5CO21150-0.4251.2∶11∶0.4塑料焦
    下载: 导出CSV

    表 4  铜渣含碳球团直接还原正交实验结果

    Table 4.  Orthogonal experimental results of direct reduction for carbon-bearing pellets of copper slag

    序号气氛(CO2N2)反应温度/℃铜渣粒径/mm还原剂配比(C/O)造渣剂配比(S/CaO)还原剂种类还原率/%
    1N2800-0.0740.8∶11∶0煤粉14.97
    2N2900-0.106+0.0740.9∶11∶0.1煤焦29.08
    3N21000+0.711∶11∶0.2生物质51.28
    4N21100-0.71+0.4251.1∶11∶0.3生物质碳80.91
    5N21150-0.4251.2∶11∶0.4塑料焦93.8
    6CO2(25%)N2(75%)800-0.106+0.0741.1∶11∶0.3塑料焦67.17
    7CO2(25%)N2(75%)900+0.711.2∶11∶0.4煤粉73.7
    8CO2(25%)N2(75%)1000-0.71+0.4250.8∶11∶0煤焦30.23
    9CO2(25%)N2(75%)1100-0.4250.9∶11∶0.1生物质66.96
    10CO2(25%)N2(75%)1150-0.0741∶11∶0.2生物质碳92.51
    11CO2(50%)N2(50%)800-0.106+0.0740.9∶11∶0.1生物质碳77.6
    12CO2(50%)N2(50%)900+0.711∶11∶0.2塑料焦75.38
    13CO2(50%)N2(50%)1000-0.71+0.4251.1∶11∶0.3煤粉87.31
    14CO2(50%)N2(50%)1100-0.0741.2∶11∶0.4煤焦89.97
    15CO2(50%)N2(50%)1150-0.106+0.0740.8∶11∶0生物质74.58
    16CO2(75%)N2(25%)800+0.711.2∶11∶0.4生物质69.34
    17CO2(75%)N2(25%)900-0.71+0.4250.8∶11∶0生物质碳39.68
    18CO2(75%)N2(25%)1000-0.0740.9∶11∶0.1塑料焦62.42
    19CO2(75%)N2(25%)1100-0.106+0.0741∶11∶0.2煤粉86.34
    20CO2(75%)N2(25%)1150+0.711.1∶11∶0.3煤焦96.6
    21CO2800-0.71+0.4251∶11∶0.2煤焦29.03
    22CO2900-0.0741.1∶11∶0.3生物质28.98
    23CO21000-0.106+0.0741.2∶11∶0.4生物质碳88.3
    24CO21100+0.710.8∶11∶0塑料焦67.19
    25CO21150-0.71+0.4250.9∶11∶0.1煤粉97.94
    270.04258.11288.91226.65226.65360.27
    330.56246.81345.47334.01334.01274.91
    404.83319.55366.38334.53334.53291.14
    354.39391.38353.78360.97360.97379.01
    311.45455.43316.79415.12415.12365.95
    Ⅰ/554.0051.6257.5845.3345.3372.05
    Ⅱ/566.1149.3669.0966.866.854.98
    Ⅲ/580.9763.9173.2866.9166.9158.22
    Ⅳ/570.8878.2870.7672.1972.1975.8
    Ⅴ/562.2991.0963.3683.0283.0273.19
    极差26.9641.7215.5037.6937.6920.82
    下载: 导出CSV
  • [1]

    姜平国, 吴朋飞, 胡晓军, 等. 铜渣综合利用研究现状及其新技术的提出[J]. 中国矿业, 2016, 25(2):76-79. doi: 10.3969/j.issn.1004-4051.2016.02.014

    JIANG P G, WU P F, HU X J, et al. Research review of comprehensive utilization of copper slag and new technology[J]. China Mining Magazine, 2016, 25(2):76-79. doi: 10.3969/j.issn.1004-4051.2016.02.014

    [2]

    孙伟, 刘建远, 贺政, 等. 某铜渣浮选试验研究[J]. 矿产综合利用, 2019(2):112-114. doi: 10.3969/j.issn.1000-6532.2019.02.023

    SUN W, LIU J Y, HE Z, et al. Study on flotation of copper slag[J]. Multipurpose Utilization of Mineral Resources, 2019(2):112-114. doi: 10.3969/j.issn.1000-6532.2019.02.023

    [3]

    YANG Z H, LIN Q, XIA J X, et al. Preparation and crystallization of glass–ceramics derived from iron-rich copper slag [J]. Journal of Alloys and Compounds, 2013, 574: 354-360.

    [4]

    LIU H Y, LU H X, CHEN D L, et al. Preparation and properties of glass–ceramics derived from blast-furnace slag by a ceramic-sintering process [J]. Ceramics International. 2009, 35(8): 3181-3184.

    [5]

    Rudnik E, Burzńska L, Gumowska W. Hydrometallurgical recovery of copper and cobalt from reduction-roasted copper converter slag[J]. Minerals Engineering, 2009, 22(1):88-95. doi: 10.1016/j.mineng.2008.04.016

    [6]

    邓彤, 凌云汉. 含钴铜转炉渣的工艺矿物学[J]. 中国有色金属学报, 2001, 11(5):881-885. doi: 10.3321/j.issn:1004-0609.2001.05.029

    DENG T, LING Y H. Process mineralogy of Cobalt - bearing copper converter slag[J]. Chinese Journal of Nonferrous Metals, 2001, 11(5):881-885. doi: 10.3321/j.issn:1004-0609.2001.05.029

    [7]

    Gyurov Stoyko, Rabadjieva Diana, Kovacheva Daniela, et al. Kinetics of copper slag oxidation under nonisothermal conditions[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2):945-954. doi: 10.1007/s10973-013-3569-2

    [8]

    Siwiec G, Oleksiak B, Matula T, et al. Reduction of copper slag with the use of carbon granulates [J]. Metallurgy. 2014, 53(4): 585-587.

    [9]

    邓彤, 文震, 刘东. 硫酸介质中氯化物参与下氧化浸出铜渣过程[J]. 中国有色金属学报, 2001, 11(2):302-306. doi: 10.3321/j.issn:1004-0609.2001.02.030

    DENG T, WEN Z, LIU D. Leaching of copper residue with oxygen in sulfuric acid with participation of chloride[J]. Chinese Journal of Nonferrous Metals, 2001, 11(2):302-306. doi: 10.3321/j.issn:1004-0609.2001.02.030

    [10]

    Warczok A, Riveros G. Slag cleaning in crossed electric and magnetic fields[J]. Minerals Engineering. 2007, 20(1): 34-43.

    [11]

    马泳波, 杜雪岩, Alibek Kakimov, 等. 富铁镍渣综合利用的研究与进展综述[J]. 矿产综合利用, 2018(6):25-31. doi: 10.3969/j.issn.1000-6532.2018.06.005

    MA Y B, DU X Y, Alibek Kakimov, et al. Research and progress of nickel slag's comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2018(6):25-31. doi: 10.3969/j.issn.1000-6532.2018.06.005

    [12]

    李伟. 云南某低品位含铁硫化铜矿综合回收试验研究[J]. 矿产综合利用, 2018(1):50-54. doi: 10.3969/j.issn.1000-6532.2018.01.011

    LI W. Experimental study on comprehensive recovery for one low-grade copper sulphide ore containing iron in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2018(1):50-54. doi: 10.3969/j.issn.1000-6532.2018.01.011

    [13]

    SUN Y S, HAO Y X, GAO P, et al. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms[J]. International Journal of Mineral Processing, 2015, 143:87-97. doi: 10.1016/j.minpro.2015.09.005

    [14]

    李涛, 刘晨, 佘世杰. 铜渣中铁铜回收的实验研究[J]. 矿产综合利用, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026

    LI T, LIU C, SHE S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026

    [15]

    徐冬林, 谢冬冬, 张旭, 等. 基于均匀试验的赤铁矿石助磨剂复配试验研究[J]. 矿产综合利用, 2019(2):30-36. doi: 10.3969/j.issn.1000-6532.2019.02.006

    XU D L, XIE D D, ZHANG X, et al. Experimental study on the mixing test of grinding aids of hematite ore based on uniform design[J]. Multipurpose Utilization of Mineral Resources, 2019(2):30-36. doi: 10.3969/j.issn.1000-6532.2019.02.006

  • 加载中

(3)

(4)

计量
  • 文章访问数:  1010
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2020-09-24
修回日期:  2020-11-02
刊出日期:  2022-10-25

目录