Study on Heavy Metal Migration and Optimal Allocation of Water Resources in Tailing Pond
-
摘要:
基于安徽铜陵某金属尾矿库污染重金属对矿区及周边地下含水层造成的潜在威胁,通过对土壤样品进行淋溶实验分析、水质模型建立、地下水位预测,最后提出水资源优化配置方案。结果表明:土壤中主要重金属元素的淋溶浓度随着pH值的降低或Ca2+的增多均存在升高的趋势,而其中Pb元素基本无法淋出,通过与当地背景值对比,矿区重金属元素的淋溶危害性较低;通过MODFLOW模块进行地下水流模拟可得矿坑停排后欲达到80 m动态平衡约需63.5年;通过MT3DMS模块进行溶质运移模拟可得浅层地下水向西运移,深层地下水向南和东方向运移。基于以上研究,对矿坑水和人工湖用水进行优化配置,为铜陵矿区水资源利用提供科学依据,并为其他类似矿区提供了参考价值。
Abstract:Based on the potential threat of heavy metal pollution from a metal tailings pond in Tongling, Anhui Province to the mining area and the surrounding underground aquifer, the leaching test analysis of soil samples, the modeling of water quality and the prediction of groundwater level were carried out. The optimal allocation scheme of water resources was proposed finally. The results showed that the leaching concentration of major heavy metal elements in the soil tended to increase with the decrease of pH value or the increase of Ca2+ concentration, while Pb elements could not be leached out. By comparing with the local background value, the leaching toxicity of heavy metal elements in the mining area was relatively low. By simulating the underground flow through the MODFLOW module, it can be concluded that it takes about 63.5 years for the dynamic balance of 80 m level to be reached after the mine is stopped discharging. The transport of shallow groundwater to the west and deep groundwater to the south and east can be obtained by simulating solute transport through MT3DMS module. Based on the above research, the optimal allocation of mine water and artificial lake water was carried out, which provided scientific basis for the utilization of water resources in Tongling Mining area and reference value for other similar mining areas.
-
Key words:
- Heavy metal /
- Leaching /
- Dynamic equilibrium /
- Solute transport /
- Optimize the allocation of water resources /
- Tailings
-
表 1 测试方法及仪器统计
Table 1. Test methods and instrument statistics
污染元素 测试方法 测试仪器 检测标准 镉、铅、铜、锌 ICP-MS(电感耦合等离子体质谱法) 等离子体质谱仪 电感耦合等离子体质谱法DZ/T 0279 .3-2016 铬 XRF(X-射线荧光光谱法) X射线荧光光谱仪 X射线荧光光谱法DZ/T 0279 .1-2016 砷 HG-AFS(氢化物-原子荧光光谱法) 原子荧光光度计 氢化物发生-原子荧光光谱法DZ/T 0279.13-2016 汞 蒸汽发生-冷原子荧光光谱法DZ/T 0279 .17-2016 表 2 土壤中主要重金属元素测定结果
Table 2. Determination results of main heavy metal elements in soil
重金属含量/(mg·kg-1) As Cd Cr Cu Hg Pb Zn 土壤样品 32.129 3.263 18.957 420.060 1.170 5.396 446.125 标准值 70 20 1000 500 20 600 700 -
[1] 汤波. 陕南金属尾矿库区土壤重金属迁移规律及其环境效应研究[D]. 西安: 西安科技大学, 2017.
TANG B. Study on the migration of heavy metals in soil and its environmental effects in the area of metal tailings reservoir in southern Shaanxi Province [D]. Xi 'an: Xi 'an University of Science and Technology, 2017.
[2] 秦玉芳, 马莹, 李娜. 白云鄂博尾矿库及其资源利用研究概况[J]. 矿产综合利用, 2020(6):100-109. doi: 10.3969/j.issn.1000-6532.2020.06.018
QIN Y F, MA Y, LI N. Study on Bayan Obo tailings reservoir and its utilization[J]. Multipurpose Utilization of Mineral Resources, 2020(6):100-109. doi: 10.3969/j.issn.1000-6532.2020.06.018
[3] 田恩源, 惠博, 陈晓青. 拉拉铜矿尾矿工艺矿物学研究[J]. 矿产综合利用, 2020(3): 148-152.
TIAN E Y, HUI B, CHEN X Q. Study on process mineralogy of tailings from Lala copper mine [J]. Multipurpose Utilization of Mineral Resources, 2020(3): 148-152.
[4] 张毅. 基于GMS的地下水溶质运移规律研究[J]. 陕西水利, 2020(7):222-224+227. doi: 10.16747/j.cnki.cn61-1109/tv.2020.07.090
ZHANG Y. Study on the law of solute transport in groundwater based on GMS[J]. Shaanxi Water Resources, 2020(7):222-224+227. doi: 10.16747/j.cnki.cn61-1109/tv.2020.07.090
[5] 单士锋. 安徽铜陵某废弃金属矿山矿化围岩酸性水污染分析[J]. 资源信息与工程, 2020, 35(3):10-13. doi: 10.3969/j.issn.2095-5391.2020.03.004
SHAN S F. Analysis of acid water pollution in mineralized surrounding rock of a waste metal mine in Tongling, Anhui Province[J]. Resources Information and Engineering, 2020, 35(3):10-13. doi: 10.3969/j.issn.2095-5391.2020.03.004
[6] 杨扬. 铜陵铜尾矿废弃地中参与金属硫化物氧化的微生物主要类群与分布[D]. 合肥: 安徽大学, 2014.
YANG Y. The main groups and distribution of microorganisms involved in metal sulfide oxidation in the wasteland of copper tailings in Tongling [D]. Hefei: Anhui University, 2014.
[7] 陈艳平, 毛益林, 陈晓青, 等. 四川某铜矿选矿实验研究[J]. 矿产综合利用, 2020(2):87-90+101. doi: 10.3969/j.issn.1000-6532.2020.02.015
CHEN Y P, MAO Y L, CHEN X Q, et al. Experimental study on beneficiation of a copper mine in Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2020(2):87-90+101. doi: 10.3969/j.issn.1000-6532.2020.02.015
[8] 郭争争, 管俊芳, 陈菲, 等. 重金属对膨润土膨胀性的影响[J]. 矿产综合利用, 2020(1):203-208. doi: 10.3969/j.issn.1000-6532.2020.01.041
GUO Z Z, GUAN J F, CHEN F, et al. Effect of heavy metals on the swelling property of bentonite[J]. Multipurpose Utilization of Mineral Resources, 2020(1):203-208. doi: 10.3969/j.issn.1000-6532.2020.01.041
[9] 陈铁爻, 李虹丽, 苏庆平. 低品位铁矿中铜离子的淋溶规律及环境影响[J]. 矿产综合利用, 2013(2):67-70. doi: 10.3969/j.issn.1000-6532.2013.02.018
CHEN T Y, LI H L, SU Q P. Leaching law of copper ions in low grade iron ore and its environmental impact[J]. Multipurpose Utilization of Mineral Resources, 2013(2):67-70. doi: 10.3969/j.issn.1000-6532.2013.02.018
[10] 毛香菊, 刘璐, 肖芳, 等. 锍镍试金-微波消解-高分辨率连续光源石墨炉原子吸收光谱法测定岩石矿物中超痕量铂钯钌铑铱[J]. 冶金分析, 2020, 40(3):1-8. doi: 10.13228/j.boyuan.issn1000-7571.010915
MAO X J, LIU L, XIAO F, et al. Determination of ultra-trace platinum, palladium, ruthenium, rhodium and iridium in rock minerals by nickel matte assay with microwave digestion and high resolution continuous source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(3):1-8. doi: 10.13228/j.boyuan.issn1000-7571.010915
[11] HJ/T 299-2007, 固体废物. 浸出毒性浸出方法. 硫酸硝酸法[S].
HJ/T 299-2007, Solid waste. Extraction toxic leaching method. Nitric Acid Method with Sulfuric Acid [S].
[12] 王春淼. 安徽铜陵典型尾矿库重金属迁移规律研究[D]. 北京: 中国地质大学(北京), 2020.
WANG C M. Study on Heavy metal migration of typical tailings in Tongling, Anhui Province [D]. Beijing: China University of Geosciences (Beijing), 2020.
[13] 刘超. 基于改进的GM(1, 1)模型的辽宁锦州地区地下水时空预测研究[J]. 地下水, 2020, 42(2): 46-48.
LIU C. Spatiotemporal prediction of groundwater in Jinzhou area of Liaoning Province based on improved GM(1, 1) model [J]. Groundwater, 2020 (2) : 46 to 48.
[14] 杨进忠, 毛益林, 陈晓青, 等. 某尾矿资源化处置与综合利用研究[J]. 矿产综合利用, 2019(6):117-122+156. doi: 10.3969/j.issn.1000-6532.2019.06.025
YANG J Z, MAO Y L, CHEN X Q, et al. Research on resource treatment and comprehensive utilization of tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(6):117-122+156. doi: 10.3969/j.issn.1000-6532.2019.06.025
[15] GB 15618-1995, 土壤环境质量标准[S].
GB 15618-1995, Soil environmental quality standard [S].
[16] 张雅楠. 基于HYDRUS-MODFLOW地表水与地下水耦合模型研究[D]. 郑州: 郑州大学, 2019.
ZHANG Y N. Study on coupling model of surface water and groundwater based on HYDRUS-MODFLOW [D]. Zhengzhou: Zhengzhou University, 2019.
[17] 王保申. 水资源的节约保护与优化配置研究[J]. 资源节约与环保, 2020(7):159. doi: 10.16317/j.cnki.12-1377/x.2020.07.123
WANG B S. Study on conservation, protection and optimal allocation of water resources[J]. Resources Conservation and Environmental Protection, 2020(7):159. doi: 10.16317/j.cnki.12-1377/x.2020.07.123
[18] 万丽, 周少珍, 曾克文, 等. 安徽某铜硫矿选矿工艺优化试验研究[J]. 矿产综合利用, 2019(6):41-44. doi: 10.3969/j.issn.1000-6532.2019.06.009
WAN L, ZHOU S Z, ZENG K W, et al. Experimental study on beneficiation process optimization of a copper and sulfur ore in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2019(6):41-44. doi: 10.3969/j.issn.1000-6532.2019.06.009