Simultaneous Stabilization of As, Zn, Pb and Cd in Lead Slag by Pyrolysis Residue of Oily Sludge
-
摘要:
针对云南省个旧市泗水庄片区铅冶炼渣As、Zn、Pb和Cd等重金属污染的问题,利用油泥热解渣对其进行稳定化处理以降低这些重金属的浸出毒性。热解渣是一种含有大量纳米FeS、Fe1-xS、CaS等的炭质复合材料,具有稳定化铅渣中重金属的潜能。研究表明,铅渣中的重金属As、Zn、Pb和Cd可高效、同步吸附在热解渣表面,降低铅渣中这些重金属的浸出毒性。当热解渣用量为4%、液固比为10:100时,铅渣中As、Zn、Pb和Cd的浸出浓度可从0.7202、3.5120、0.3800和0.0456 mg/L分别降低至0.0714、0.1668、0.0262和0.0038 mg/L,低于地表水环境质量标准(GB 3838—2002)中Ⅳ级限值。铅渣中As、Zn、Pb和Cd浸出浓度的降低是因为铅渣中的As与热解渣表面的Ca2+、Fe2+反应就地生成了稳定的砷酸钙和砷酸亚铁,铅渣中Zn2+、Pb2+和Cd2+与热解渣表面的S2-反应就地生成了稳定的ZnS、PbS和CdS,从而提高了铅渣中As、Zn、Pb和Cd的稳定性。
Abstract:To address the problem of heavy metal contamination of lead smelting slag such as As, Zn, Pb and Cd in the Sishuizhuang area of Gejiu City, Yunnan Province, oily sludge pyrolysis residue was used to stabilize them to reduce the leaching toxicity of these heavy metals. The pyrolysis residue is a carbonaceous composite containing a large amount of nano-FeS, Fe1-xS, CaS, etc., which has the potential to stabilize the heavy metals in lead slag. It was shown that heavy metals As, Zn, Pb and Cd in lead slag could be efficiently and synchronously adsorbed on the surface of pyrolysis residue, reducing the leaching toxicity of these heavy metals in lead slag. When the weight ratio of pyrolysis residueis is 4% and liquid-solid ratio is 10:100, the leaching concentrations of As, Zn, Pb and Cd in the lead slag can be reduced from 0.7202, 3.5120, 0.3800 and 0.0456 mg/L to 0.0714, 0.1668, 0.0262 and 0.0038 mg/L, respectively, which are lower than the surface water environmental quality standards (GB 3838—2002 ) in the Ⅳ level limit value. The reduction of leaching concentration of As, Zn, Pb and Cd in lead slag is due to the reaction of As in lead slag with Ca2+ and Fe2+ on the surface of pyrolysis slag to produce stable calcium arsenate and ferrous arsenate in situ, and the reaction of Zn2+, Pb2+ and Cd2+ in lead slag with S2- on the surface of pyrolysis slag to produce stable ZnS, PbS and CdS in situ, which improves the stability of As, Zn, Pb and Cd in lead slag.
-
Key words:
- Pyrolysis residue of oily sludge /
- Lead slag /
- Heavy metals /
- Leaching toxicity /
- Stabilization
-
表 1 铅渣中重金属的种类、含量及污染特性
Table 1. Types, contents and pollution characteristics of heavy metals in lead slag
名称 As Zn Pb Cu Cd pH值 铅渣中重金属总量/(mg·kg-1) 2743.00 40603.41 17383.20 2275.90 16.58 7.50 硫酸硝酸法浸出浓度/(mg·L-1) 0.720 3.512 0.380 0.783 0.046 7.35 地表Ⅳ类水质浓度限值/(mg·L-1) 0.100 2.000 0.050 1.000 0.005 6~9 表 2 铅渣中污染重金属矿物的种类和含量
Table 2. Types and contents of polluting heavy metal minerals in lead slag
矿物名称 分子式 比重/(g.cm-3) 质量比/% 铅铁矾 PbFe6[(OH)6(SO4)2]2 3.67 0.9165 黄铜矿 CuFeS2 4.20 1.7189 砷菱铅矾 PbFe3[(OH)6SO4AsO4] 4.15 0.9217 铁闪锌矿 Zn0.8Fe0.2S 4.10 0.395 毒砂 FeAsS 6.10 0.3375 块黑铅矿 PbO2 9.32 0.358 锌铁尖晶石 ZnFe2O4 5.21 0.4558 砷铅铁矿 PbFe(3+)2[OHAsO4]2 5.18 0.113 钼铅矿(彩钼铅矿) Pb[MoO4] 6.75 0.2111 铬铁尖晶石 Fe(Al,Cr)2O4 4.42 0.0084 锌黄长石 Ca2Zn[Si2O7] 3.40 0.0511 镍纹石 (Fe, Ni) 8.00 2.1142 表 3 油泥热解渣中主要元素及其含量/%
Table 3. Main elements and contents in pyrolysis residue of oily sludge
Fe Ca Al Si S C 其他 25.69 9.40 9.52 9.06 18.43 22.70 3.20 -
[1] 赵成, 朱军, 王正民, 等. 重要有色金属冶炼废渣的特征及处理技术[J]. 矿产综合利用, 2019(6):1-6. doi: 10.3969/j.issn.1000-6532.2019.06.001
ZHAO C, ZHU J, WANG Z M, et al. Characteristics and treatment technology of non-ferrous heavy metal smelting slag[J]. Multipurpose Utilization of Mineral Resources, 2019(6):1-6. doi: 10.3969/j.issn.1000-6532.2019.06.001
[2] 朱军, 李维亮, 刘曼博, 等. 锌湿法冶炼渣的污染物分析及综合利用技术[J]. 矿产综合利用, 2020(4):59-65. doi: 10.3969/j.issn.1000-6532.2020.04.009
ZHU J, LI W L, LIU M B, et al. Analysis of contaminants and comprehensive utilization technology of zinc hydrometallurgical slag[J]. Multipurpose Utilization of Mineral Resources, 2020(4):59-65. doi: 10.3969/j.issn.1000-6532.2020.04.009
[3] 缑明亮, 夏丹. 陕西某锌冶炼厂锌冶炼渣综合利用[J]. 矿产综合利用, 2020(4):147-151. doi: 10.3969/j.issn.1000-6532.2020.04.025
GOU M L, XIA D. Study on comprehensive utilization of zinc smelting slag in a zinc smelter in Shaanxi province[J]. Multipurpose Utilization of Mineral Resources, 2020(4):147-151. doi: 10.3969/j.issn.1000-6532.2020.04.025
[4] 顾丝雨, 刘维, 韩俊伟, 等. 含锌冶炼渣综合利用现状及发展趋势[J/OL]. 矿产综合利用: 1-12
2-05-09]. GU S Y, LIU W, HAN J W, et al. Current situation and development trend of comprehensive utilization of zinc smelting slag[J/OL]. Multipurpose Utilization of Mineral Resources: 1-12[2022-05-09].
[5] 陈灿, 谢伟强, 李小明, 等. 水泥、粉煤灰及生石灰固化/稳定处理铅锌废渣. 环境化学, 2015, 34(8): 1553-1560.
CHEN C, XIE W Q, LI X M, et al. Solidification/stabilization of Pb and Zn in tailing waste using cement, fly ash and quick lime[J]. Environmental Chemistry, 2015, 34(8): 1553-1560.
[6] 闫潇, 刘兴宇, 张明江, 等. 分离自活性污泥的硫酸盐还原菌用于铅锌冶炼渣重金属污染修复[J]. 微生物学通报, 2019, 46(8):1907-1916. doi: 10.13344/j.microbiol.china.190283
YAN X, LIU X Y, ZHANG M J, et al. Remediation of heavy metal pollution by sulfate reducing bacteria (SRB) isolated from activated sludge in lead-zinc smelter slag[J]. Microbiology China, 2019, 46(8):1907-1916. doi: 10.13344/j.microbiol.china.190283
[7] 于冰冰, 颜湘华, 王兴润, 等. 不同材料对铅锌冶炼渣中Zn, Cd和As的稳定化效应[J]. 环境工程, 2020, 38(8):8.
YU B B, YAN X H, WANG X R, et al. Effect of different immobilizing materials on Zn, Cd and As in lead-zinc smelting slags[J]. Environmental Engineering, 2020, 38(8):8.
[8] LI E, YANG T, WANG Q, et al. Long-term stability of arsenic calcium residue (ACR) treated with FeSO4 and H2SO4: Function of H+ and Fe (Ⅱ)[J]. Journal of Hazardous Materials, 2021, 420:126549. doi: 10.1016/j.jhazmat.2021.126549
[9] LIN Y, WU B, PING N, et al. Stabilization of arsenic in waste slag using FeCl2 or FeCl3 stabilizer[J]. RSC Advances, 2017, 7(87):54956-54963. doi: 10.1039/C7RA10169D
[10] Kim S H, Jeong S, Chung H, et al. Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency[J]. Chemosphere, 2018, 208:916-921. doi: 10.1016/j.chemosphere.2018.05.173
[11] ZHANG G, YANG H F, LI Z, et al. Comparative investigation on removal of thallium(Ⅰ) from wastewater using low-grade pyrolusite and pyrolysis residue derived from oily sludge: Performance, mechanism and application[J]. Groundwater for Sustainable Development, 2022, 16:100713. doi: 10.1016/j.gsd.2021.100713
[12] 杨慧芬, 李真, 付鹏, 等. 罐底油泥热解产物高附加值利用途径[J]. 环境工程学报, 2021, 15(2):717-726. doi: 10.12030/j.cjee.202003141
YANG H F, LI Z, FU P, et al. High value-added utilization approach of pyrolysis products generated by tank bottom oily sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(2):717-726. doi: 10.12030/j.cjee.202003141
[13] 赵瑜, 谢贤, 童雄. 基于工艺矿物学的某铅锌尾矿中资源综合回收可行性研究[J]. 矿产综合利用, 2021(4):154-158. doi: 10.3969/j.issn.1000-6532.2021.04.024
ZHAO Y, XIE X, TONG X. Feasibility study on multipurpose recovery of resource in lead and zinc tailings based on process mineralogy[J]. Multipurpose Utilization of Mineral Resources, 2021(4):154-158. doi: 10.3969/j.issn.1000-6532.2021.04.024