微生物技术在矿物选冶过程中的研究进展

王雨桐, 艾光华, 肖国圣. 微生物技术在矿物选冶过程中的研究进展[J]. 矿产综合利用, 2022, 43(5): 91-95, 108. doi: 10.3969/j.issn.1000-6532.2022.05.016
引用本文: 王雨桐, 艾光华, 肖国圣. 微生物技术在矿物选冶过程中的研究进展[J]. 矿产综合利用, 2022, 43(5): 91-95, 108. doi: 10.3969/j.issn.1000-6532.2022.05.016
Wang Yutong, Ai Guanghua, Xiao Guosheng. Research Progress of Microbial Technology in Mineral Processing and Metallurgy[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 91-95, 108. doi: 10.3969/j.issn.1000-6532.2022.05.016
Citation: Wang Yutong, Ai Guanghua, Xiao Guosheng. Research Progress of Microbial Technology in Mineral Processing and Metallurgy[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 91-95, 108. doi: 10.3969/j.issn.1000-6532.2022.05.016

微生物技术在矿物选冶过程中的研究进展

  • 基金项目: 国家自然科学基金项目(51874150);江西省杰出青年人才计划项目(20192BCB23017);江西省“双千计划”项目;江西省“青年井冈学者”项目
详细信息
    作者简介: 王雨桐(1997-),女,硕士研究生
  • 中图分类号: TD985

Research Progress of Microbial Technology in Mineral Processing and Metallurgy

  • 由于矿物逐渐被开采,优质矿物资源日益短缺,“贫、细、杂” 矿物的选别回收亟待解决,人们对选矿技术的要求越来越高。一些特殊的微生物本身或者其代谢物可以将矿物中的离子溶解出来,或者改变矿物的表面性质,并且,与传统选矿药剂和浸出剂相比,微生物具有成本较低,对后续环境污染小的优势,因此,微生物浮选和微生物冶金技术得到了快速的发展。本文介绍了国内外对微生物浸出、氧化、分解和微生物在矿物表面的吸附、化学反应及微生物细胞表面化学等方面的研究进展。

  • 加载中
  • [1]

    杨慧芬, 孙启伟, 马文凯, 等. 铁矾渣中有价金属的微生物矿化-浮选回收可能性和前景[J]. 矿产综合利用, 2020(1):43-46. doi: 10.3969/j.issn.1000-6532.2020.01.008

    YANG H F, SUN Q W, MA W K, et al. Possibility and prospect of recovery of valuable metals in jarosite residues using microorganism mineralization-flotation Method[J]. Multipurpose Utilization of Mineral Resources, 2020(1):43-46. doi: 10.3969/j.issn.1000-6532.2020.01.008

    [2]

    刘明实, 万选志, 刘子龙, 等. 甲玛地区角岩矿微生物浸出的实验研究[J]. 矿产综合利用, 2020(3):89-93. doi: 10.3969/j.issn.1000-6532.2020.03.014

    LIU M S, WAN X Z, LIU Z L, et al. Experimental study on the hornfels ore’s microbiological leaching in Jiama region[J]. Multipurpose Utilization of Mineral Resources, 2020(3):89-93. doi: 10.3969/j.issn.1000-6532.2020.03.014

    [3]

    雷英杰, 艾翠玲, 张国春, 等. 微生物浸出技术及其研究进展[J]. 广州化工, 2016, 44(14):12-14. doi: 10.3969/j.issn.1001-9677.2016.14.006

    LEI Y J, AI C L, ZHANG G C, et al. Microbial leaching technology and its research progress[J]. Guangzhou Chemical Industry, 2016, 44(14):12-14. doi: 10.3969/j.issn.1001-9677.2016.14.006

    [4]

    Weimin Zeng, Guanzhou Qiu, Hongbo Zhou, et al. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate[J]. Hydrometallurgy, 2009, 100(3):177-180.

    [5]

    梁昱婷, 韩俊伟, 艾郴兵, 等. 两种极端嗜热古菌对黄铜矿的吸附和浸出行为(英文)[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12):2538-2544. doi: 10.1016/S1003-6326(18)64900-3

    LIANG Y T, HAN J W, AI C B, et al. Adsorption and leaching behavior of chalcopyrite by two extremely thermophilic archaea[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12):2538-2544. doi: 10.1016/S1003-6326(18)64900-3

    [6]

    郝福来. 生物冶金技术的发展及其在黄金行业中的应用现状[J]. 黄金, 2019, 40(5):51-56. doi: 10.11792/hj20190511

    HAO F L. Development of bio metallurgy technology and its application in gold industry[J]. Gold, 2019, 40(5):51-56. doi: 10.11792/hj20190511

    [7]

    李学亚, 叶茜. 微生物冶金技术及其应用[J]. 矿业工程, 2006(2):49-51. doi: 10.3969/j.issn.1671-8550.2006.02.023

    LI X Y, YE X. Microbial metallurgy technology and its application[J]. Mining Engineering, 2006(2):49-51. doi: 10.3969/j.issn.1671-8550.2006.02.023

    [8]

    王传凯, 李响, 张永奎, 等. 喷淋塔中固定化Acidithiobacillusferrooxidans对Fe~(2+)的生物氧化特性研究[J]. 矿产综合利用, 2018(2):130-134. doi: 10.3969/j.issn.1000-6532.2018.02.029

    WANG C K, LI X, ZHANG Y K, et al. Study on biological oxidation characteristics of Fe~(2+) by immobilized acidithiobacillusferrooxidans in spray tower[J]. Multipurpose Utilization of Mineral Resources, 2018(2):130-134. doi: 10.3969/j.issn.1000-6532.2018.02.029

    [9]

    陈茂春. 细菌分解磷矿基础研究[D]. 成都: 四川大学, 2001.

    CHEN M C. Basic research on bacterial decomposition of phosphate rock[D]. Chengdu: Sichuan University, 2001.

    [10]

    Halder A K, Mishra A K, Bhattacharyya P, et al. Solubilization of rock phosphate by rhizobium and bradyrhizobium[J]. Journal of General & Applied Microbiology, 1990, 36(2):81-92.

    [11]

    Varsha Narsian, Jugnu Thakkar, H H Patel. Mineral phosphate solubilization by Aspergillus aculeatus[J]. Indian Journal of Experimental Biology, 1995, 33(2):91-93.

    [12]

    E Nahas, D A Banzatto, L C Assis. Fluorapatitesolubilization by aspergillus niger in vinassemedium[J]. Pergamon, 1990, 22(8):1097-1101.

    [13]

    Dwyer, Bruckard, Rea, et al. Bioflotation and bioflocculation review: microorganisms relevant for mineral beneficiation[J]. Mineral Processing and Extractive Metallurgy, 2012, 121(2).

    [14]

    蒋鸿辉, 王琨. 生物选矿的应用研究现状及发展方向[J]. 中国矿业, 2005(9):76-78. doi: 10.3969/j.issn.1004-4051.2005.09.022

    JIANG H H, WANG K. Application research status and development direction of biological beneficiation[J]. China Mining, 2005(9):76-78. doi: 10.3969/j.issn.1004-4051.2005.09.022

    [15]

    Kianoush Barani, Masoud Kalantari. Recovery of kaolinite from tailings of zonouz kaolin-washing plant by flotation-flocculation method[J]. Journal of Materials Research and Technology, 2018, 7(2).

    [16]

    N A Abdel-Khalek, K A Selim, K E Yassin, et al. Bio-flotation of egyptian phosphate using desulfvibrio desulfuricans bacteria[J]. Journal of Mining World Express, 2015:4.

    [17]

    A Vilinska, K Hanumantha Rao. Leptosririllumferrooxidans-sulfide mineral interactions with reference to bioflotation and bioflocculation[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6):1403-1409. doi: 10.1016/S1003-6326(09)60016-9

    [18]

    Ross W Smith, Manoranjan Misra, Shuzhong Chen. Adsorption of a hydrophobic bacterium onto hematite: Implications in the froth flotation of the mineral[J]. Journal of Industrial Microbiology, 2005, 11(2).

    [19]

    Nagui A Abdel-Khalek, Khaled A Seiem, Samah E Mohammed, et al. Interaction between kaolinite and staphylococcus gallinarum bacteria[J]. Journal of Mining World Express, 2014:3.

    [20]

    Beech Iwona B, Sunner Jan. Biocorrosion: towards understanding interactions between biofilms and metals[J]. Current opinion inbiotechnology, 2004, 15(3):181-186. doi: 10.1016/j.copbio.2004.05.001

    [21]

    Agnieszka M, Didyk, Sadowski, et al. Flotation of serpentinite and quartz using biosurfactants [J]. Physicochemical Problems of Mineral Processing, 2012.

    [22]

    Swaranjit Singh Cameotra, Randhir S Makkar , Biosurfactant-enhanced bioremediation of hydrophobic pollutants[J]. Pure and Applied Chemistry, 2013, 82(1).

    [23]

    Yelloji Rao, M K Natarajan, et al. Effect of biotreatment with thiobacillusferrooxidans on the floatability of sphalerite and galena[J]. Mining, Metallurgy & Exploration, 1992, 9(2):95-100.

    [24]

    E Amini, M Oliazadeh, M Kolahdoozan. Kinetic comparison of biological and conventional flotation of coal[J]. Minerals Engineering, 2009.

    [25]

    Päivi Kinnunen, Hanna Miettinen, Malin Bomberg. Review of potential microbial effects on flotation[J]. Minerals, 2020: 10(6).

    [26]

    H Sarvamangala, K A Natarajan. Microbially induced flotation of galena and quartz from pyrite[J]. Advanced Materials Research, 2009(8):35.

    [27]

    杨慧芬, 李甜, 唐琼瑶, 等. 浮选难选赤铁矿的微生物捕收剂的筛选及性能评价[J]. 中南大学学报(自然科学版), 2013, 44(11):4371-4378.

    YANG H F, LI T, TANG Q Y, et al. Screening and performance evaluation of microbial collectors for flotation of refractory hematite[J]. Journal of Central South University (Natural Science Edition), 2013, 44(11):4371-4378.

  • 加载中
计量
  • 文章访问数:  1420
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2020-09-25
刊出日期:  2022-10-25

目录