-
摘要:
煤型铀主要是指赋存于煤层的铀,一般以煤中铀含量大于或等于40 μg/g为煤型铀资源界定标准。为总结云南省煤中铀含量特征,查明煤型铀资源分布规律。通过系统查阅196份煤田勘查报告,筛查出12个煤矿中109口钻孔的至少208个煤中铀含量数据,结合前人数据共整理出23个煤矿中的至少1044个煤中铀含量数据,统计分析显示:(1)煤中铀含量差异显著,分布极为不均;(2)峨山塔甸三叠系无烟煤中平均铀含量为27.6 μg/g,系国内新发现的又一罕见的无烟煤型铀富集区;(3)潞西等㽘、临沧勐旺—帮卖、建水甸尾、弥勒跨竹、蒙自南部的新近系褐煤和文山邱砚煤田的二叠系贫煤、新近系长焰煤,共6个地区煤中铀含量达到煤型铀资源界定标准,尤以临沧盆地群和邱砚煤田最具煤—铀及多金属勘探开发价值。初步分析认为煤中铀含量受煤阶影响有限,铀源供给才是铀富集并成矿的先决条件。
Abstract:The coal-type uranium generally refers to uranium minerals occurring in coal seam uranium, generally the uranium content in coal is greater than or equal to 40 μg/g as its defining uranium resources standard. In order to summarize the characteristics of uranium content in coal in Yunnan Province and find out the distribution law of coal-type uranium resources. Through systematic review of 196 coal field exploration reports, the uranium content data of at least 208 coals of 109 boreholes in 12 coal mines were screened out. Combined with previous data, the uranium content data of at least 1044 coals in 23 coal mines were sorted out. Our statistical analysis shows that: (1) Uranium content in coal varies significantly and its distribution is extremely uneven. (2) The average uranium content in Triassic anthracite in Eshan Tadian is 27.6 μg/g, which is another rare anthracite uranium enrichment area newly discovered in China. (3) The Neogene lignite of Denggang coal mine in Luxi basin, Mengwang-Bangmai coal mine in Lincang basin, Dianwei coal mine in Jianshui, Kuazhu coal mine in Mile basin and southern Mengzi basin, with Permian lean coal and Neogene long flame coal in Qiuyan coal field in Wenshan, a total of six areas of uranium content in coal reach to the define standard of coal-type uranium deposits, especially in the Lincang basin group and Qiuyan coalfield own the most value in coal-uranium and polymetallic exploration and development. The preliminary analysis shows that uranium content in coal is not limited by coal rank and uranium source supply is the prerequisite for uranium enrichment and mineralization.
-
Key words:
- Yunnan /
- Coal-type uranium ore /
- Uranium content in coal /
- Lincang basin group /
- Qiuyan coalfield /
- Uranium source
-
图 1 云南省煤型铀资源分布(据[14]修改)
Figure 1.
表 1 云南省含煤盆地(煤田)煤中铀含量统计
Table 1. Statistical of uranium content in coal of coal bearing basin (coal field) in Yunnan Province
赋煤带 盆地/煤田 煤矿 煤种 煤层时代 铀含量范围/均值/(μg·g-1) 煤样数 资料来源 腾冲—潞西(I) 户撒盆地 向董 褐煤 N 10.3−34/15.9 12 * 户撒盆地 向董 褐煤 N 2.39−16/7.39 15 [15] 保山—临沧(II) 潞西盆地 等㽘 褐煤 N 112.1−520/294.9 3 * 永平盆地 永平 褐煤 N 0.2−0.6/0.3 5 [10] 临沧盆地群 勐旺 褐煤 N 10−2522/242.5 36 * 临沧盆地群 勐旺 褐煤 N 26−783/207 — [6] 临沧盆地群 帮卖 褐煤 N 1.05−640/56 78 [16] 临沧盆地群 帮卖 褐煤 N 2.9−29.39/18.69 5 [17] 临沧盆地群 帮卖 褐煤 N 71.5 1 [2] 临沧盆地群 勐托 褐煤 N 7.17−32.5/20.2 — [18] 兰坪—普洱(III) 景谷盆地群 景谷 褐煤 N 0.1−3.9/0.9 52 [10] 景谷盆地群 景谷 长焰煤 N 0.3−12.6/1.5 79 [10] 景洪盆地群 普洱 褐煤 N 0.1−0.7/0.3 4 [10] 景洪盆地群 景洪 褐煤 N 2.7−9.3/6.7 5 [10] 华坪—楚雄(IV) 祥云煤田 云南驿 褐煤 N 10−31.2/15.5 5 * 一平浪煤田 一平浪 褐煤 N 12−27/17.1 8 * 一平浪煤田 一平浪 肥煤 T 0.5−0.6/0.6 9 [10] 一平浪煤田 姚安 褐煤 N 11−21.8/14.7 3 * 一平浪煤田 峨山塔甸 无烟煤 T 7.9−68.3/27.6 56 * 昆明—建水(V) 昆明盆地群 寻甸先锋 褐煤 N 9.3−59.3/18.1 43 * 昆明盆地群 宜良可保 褐煤 N 0.2−13.1/4.3 70 [10] 开远盆地 小龙潭 褐煤 N 1.83−16.8/7.28 3 [2] 建水盆地 甸尾 褐煤 N 500−1100/>500 — * 建水盆地 甸尾 褐煤 N 306−700/>306 — [6] 建水盆地 / 褐煤 N 2.8−73/10.5 111 [10] 昭通—曲靖(VI) 宣富煤田 恩洪 焦煤 P 0.1−2.5/0.2 40 [10] 弥勒盆地 跨竹 褐煤 N 31.2−197/118.6 10 * 蒙自—文山(VII) 蒙自盆地 蒙自南 褐煤 N 10.7−141.5/51.3 20 * 蒙自盆地 / 褐煤 N 0.14−141.5/36.8 223 [10] 邱砚煤田 邱北 长焰煤 N 38.3−64.7/55.7 5 [10] 邱砚煤田 砚山干河 长焰煤 N 45−314.7/101.1 12 * 邱砚煤田 砚山干河 长焰煤 N 0.1−315.8/66.3 115 [10] 邱砚煤田 / 贫煤 P 111−178/155 7 [19] 邱砚煤田 砚山 贫煤 P 167 1 [20] 马关盆地 马关 长焰煤 N 0.2−6.5/3.8 8 [10] 注: *表示本文收集数据;/未知采样地区; —未知煤样数目 -
[1] 蔡煜琦, 张金带, 李子颖, 等. 中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6):1051-1069. CAI Y Q, ZHANG J D, LI Z Y, et al. Outline of uranium resources characteristics and metallogenetic regularity in China[J]. Acta Geologica Sinica, 2015, 89(6):1051-1069. doi: 10.3969/j.issn.0001-5717.2015.06.005
[2] 黄文辉, 唐修义. 中国煤中的铀、钍和放射性核素[J]. 中国煤田地质, 2002, 14(S1): 55-63.
HUANG W H, TANG X Y. Uranium, thorium and other radionuclides in coal of China[J]. Coal Geology of China, 2002, 14(suppl): 55-63.
[3] Dai S F, Ren D Y, Chou C L, et al. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94:3-21. doi: 10.1016/j.coal.2011.02.003
[4] 姚振凯. 中国成煤大地构造演化与煤中铀的成矿作用[J]. 大地构造与成矿学, 1988, 12(3): 185–196.
YAO Z K. Tectonic evolution of coal-forming processes in China and uranium mineralization in coalbeds[J]. Geotectonica et Metallogenia, 12(3): 185–196.
[5] 刘章月, 董文明, 刘红旭. 新疆萨瓦布其地区含铀煤成因分析[J]. 铀矿地质, 2011, 27(6):345-351. LIU Z Y, DONG W M, LIU H X. Analysis on genesis of uranium-bearing coal in Sawabugi area, Xinjiang[J]. Uranium Geology, 2011, 27(6):345-351. doi: 10.3969/j.issn.1000-0658.2011.06.005
[6] 袁三畏. 中国煤质论评[M]. 北京: 煤炭工业出版社, 1999: 1-306.
YUAN S W. Review of coal quality in China[M]. Beijing: Coal Industry Press, 1999: 1-306.
[7] 代世峰, 任德贻, 孙玉壮, 等. 鄂尔多斯盆地晚古生代煤中铀和钍的含量与逐级化学提取[J]. 煤炭学报, 2004(增刊): 56-60.
DAI S F, REN D Y, SUN Y Z, et al. Concentration nd the sequential chemical extraction procedures of U and Th in the Paleozoic coals from the Ordos basin[J]. Journal of China Coal Science, 2004(Suppl): 56-60.
[8] 孙玉壮, 赵存良, 李彦恒, 等. 煤中某些伴生金属元素的综合利用指标探讨[J]. 煤炭学报, 2014, 39(4):744-748. SUN Y Z, ZHAO C L, LI Y H, et al. Minimum mining grade of the selected trace elements in Chinese coal[J]. Journal of China Coal Society, 2014, 39(4):744-748. doi: 10.13225/j.cnki.jccs.2013.1718
[9] 周贤青, 秦勇, 陆鹿. 中国煤型铀地质–地球化学研究进展[J]. 煤田地质与勘探, 2019, 47(4):45-53. ZHOU X Q, QIN Y, LU L. Advances on geological-geochemical research of coal-type uranium in China[J]. Coal Geology & Exploration, 2019, 47(4):45-53. doi: 10.3969/j.issn.1001-1986.2019.04.008
[10] 席维实. 云南部分地区煤中铀含量概况[J]. 中国煤田地质, 1992, 4(3):356-358. XI W S. Overview of uranium content in coals in some areas of Yunnan[J]. Coal Geology of China, 1992, 4(3):356-358.
[11] 张骞, 夏彧, 伍皓, 等. 云南煤系铀资源潜力分析与典型矿床铀赋存状态研究[J]. 矿产综合利用, 2021(5):106-112. ZHANG Q, XIA Y, WU H, et al. Potential analysis of uranium resources in coal measures and study on uranium occurrences of typical ore deposits in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):106-112. doi: 10.3969/j.issn.1000-6532.2021.05.016
[12] 伍皓, 江新胜, 余谦, 等. “煤铀兼探”找矿新思路在云南的初次应用—以滇西户撒盆地铀矿勘探为例[J]. 沉积与特提斯地质, 2016, 36(4):106-110. WU H, JIANG X S, YU Q, et al. Coal-uranium exploration in the Husa Basin, western Yunnan: a new approach[J]. Sedimentary Geology and Tethyan Geology, 2016, 36(4):106-110. doi: 10.3969/j.issn.1009-3850.2016.04.015
[13] 罗星云, 张永宏. 云南新近纪聚煤盆地特征及成因类型[J]. 中国煤炭地质, 2013, 25(9):10-17. LUO X Y, ZHANG Y H. Neogene coal-accumulation basin characteristics and genetic types in Yunnan Province[J]. Coal Geology of China, 2013, 25(9):10-17. doi: 10.3969/j.issn.1674-1803.2013.09.03
[14] 罗俊, 袁玺, 林玉成, 等. 云南省煤炭及煤层气聚集规律与资源潜力[M]. 北京: 地质出版社, 2017: 1–406.
LUO J, YUAN X, LIN Y C, et al. Accumulation regularity and resource potential of coal and coalbed methane in Yunnan Province[M]. Beijing: Geological publishing house, 2017: 1–406.
[15] 夏彧, 伍皓, 周恳恳, 等. 滇西户撒盆地新近系褐煤微量元素地球化学特征[J]. 沉积与特提斯地质, 2018, 38(2):94-102. XIA Y, WU H, ZHOU K K, et al. Geochemical signatures of the trace elements in the Neogene lignites in the Husa Basin, western Yunnan[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(2):94-102. doi: 10.3969/j.issn.1009-3850.2018.02.011
[16] Hu R Z, Qi H W, Zhou M F, et al. Geological and geochemical constraints on the origin of the giant Lincang coal seam–hosted germanium deposit, Yunnan, SW China: a review[J]. Ore Geology Reviews, 2009, 36:221-234. doi: 10.1016/j.oregeorev.2009.02.007
[17] 李洋. 云南临沧地区煤中微量元素地球化学研究[D]. 合肥: 安徽理工大学, 2007: 1–71.
LI Y. Geochemistry of trace elements in coal from Lincang area, Yunnan province[D]. Hefei: Anhui university of science and technology, 2017: 1–71.
[18] 陈健, 陈萍, 姚多喜, 等. 云南省临沧市勐托新近系褐煤的微量元素地球化学特征[J]. 地学前缘, 2016, 23(3):83-89. CHEN J, CHEN P, YAO D X, et al. Geochemistry of trace elements in the Mengtuo Neogene lignite of Lincang, western Yunnan[J]. Earth Science Frontiers, 2016, 23(3):83-89. doi: 10.13745/j.esf.2016.03.011
[19] Dai S F, Ren D Y, Zhou Y P, et al. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation[J]. Chemical Geology, 2008, 255(1):182-194.
[20] 杨宗. 云南砚山晚二叠世煤中V、Cr、Mo和U的丰度与赋存状态[J]. 矿物岩石地球化学通报, 2009, 28(3):268-271. YAN Z. Occurrence and abundance of V, Cr, Mo and U in the late Permian coals from Yanshan, Yunnan, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(3):268-271. doi: 10.3969/j.issn.1007-2802.2009.03.011
[21] Ketris M P, Yudovich Y E. Estimations of clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2):135-148. doi: 10.1016/j.coal.2009.01.002
[22] 喻亦林. 滇西临沧褐煤放射性水平及区域污染分析[J]. 地球与环境, 2007, 35(2):147-153. YU Y L. Analysis of radioactive level of lignite and associated regional pollution in Lincang, West Yunnan[J]. Earth and Environment, 2007, 35(2):147-153. doi: 10.3969/j.issn.1672-9250.2007.02.009
[23] 尹金双, 陈功, 刘正义, 等. 云南临沧地区煤中世界特大型锗(铀)矿床有机成矿机理研究[J]. 核工业北京地质研究院年报, 1996, 13:42-53. YIN J S, CHEN G, LIU Z Y, et al. Study on organic metallogenic mechanism of the world super large germanium (uranium) deposit in Lincang Area, Yunnan Province[J]. Annual Report of Beijing Institute of Geology of Nuclear Industry, 1996, 13:42-53.
[24] Dai S F, Seredin V V, Ward C R, et al. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the LatePermian Guiding coalfield, Guizhou, China[J]. Mineralium Deposita, 2015, 50(2):159-186. doi: 10.1007/s00126-014-0528-1