云南省煤型铀资源分布规律

伍皓, 李晋文, 夏彧, 周恳恳, 张骞. 云南省煤型铀资源分布规律[J]. 矿产综合利用, 2023, 44(1): 70-74, 87. doi: 10.3969/j.issn.1000-6532.2023.01.009
引用本文: 伍皓, 李晋文, 夏彧, 周恳恳, 张骞. 云南省煤型铀资源分布规律[J]. 矿产综合利用, 2023, 44(1): 70-74, 87. doi: 10.3969/j.issn.1000-6532.2023.01.009
Wu Hao, Li Jinwen, Xia Yu, Zhou Kenken, Zhang Qian. Distribution Law of Coal-Type Uranium Resources in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 70-74, 87. doi: 10.3969/j.issn.1000-6532.2023.01.009
Citation: Wu Hao, Li Jinwen, Xia Yu, Zhou Kenken, Zhang Qian. Distribution Law of Coal-Type Uranium Resources in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 70-74, 87. doi: 10.3969/j.issn.1000-6532.2023.01.009

云南省煤型铀资源分布规律

  • 基金项目: 中国地质调查局项目“西南主要成矿带铀矿资源调查”(DD20190122)资助
详细信息
    作者简介: 伍皓(1984-),男,硕士,高级工程师,主要从事铀矿调查研究与锆石微量元素统计分析
    通讯作者: 周恳恳(1981-),男,博士,正高级工程师,主要从事沉积能源矿产勘查。
  • 中图分类号: P612;P617

Distribution Law of Coal-Type Uranium Resources in Yunnan Province

More Information
  • 煤型铀主要是指赋存于煤层的铀,一般以煤中铀含量大于或等于40 μg/g为煤型铀资源界定标准。为总结云南省煤中铀含量特征,查明煤型铀资源分布规律。通过系统查阅196份煤田勘查报告,筛查出12个煤矿中109口钻孔的至少208个煤中铀含量数据,结合前人数据共整理出23个煤矿中的至少1044个煤中铀含量数据,统计分析显示:(1)煤中铀含量差异显著,分布极为不均;(2)峨山塔甸三叠系无烟煤中平均铀含量为27.6 μg/g,系国内新发现的又一罕见的无烟煤型铀富集区;(3)潞西等㽘、临沧勐旺—帮卖、建水甸尾、弥勒跨竹、蒙自南部的新近系褐煤和文山邱砚煤田的二叠系贫煤、新近系长焰煤,共6个地区煤中铀含量达到煤型铀资源界定标准,尤以临沧盆地群和邱砚煤田最具煤—铀及多金属勘探开发价值。初步分析认为煤中铀含量受煤阶影响有限,铀源供给才是铀富集并成矿的先决条件。

  • 加载中
  • 图 1  云南省煤型铀资源分布(据[14]修改)

    Figure 1. 

    表 1  云南省含煤盆地(煤田)煤中铀含量统计

    Table 1.  Statistical of uranium content in coal of coal bearing basin (coal field) in Yunnan Province

    赋煤带盆地/煤田煤矿煤种煤层时代铀含量范围/均值/(μg·g-1煤样数资料来源
    腾冲—潞西(I)户撒盆地向董褐煤N10.3−34/15.912*
    户撒盆地向董褐煤N2.39−16/7.3915[15]
    保山—临沧(II)潞西盆地等㽘褐煤N112.1−520/294.93*
    永平盆地永平褐煤N0.2−0.6/0.35[10]
    临沧盆地群勐旺褐煤N10−2522/242.536*
    临沧盆地群勐旺褐煤N26−783/207[6]
    临沧盆地群帮卖褐煤N1.05−640/5678[16]
    临沧盆地群帮卖褐煤N2.9−29.39/18.695[17]
    临沧盆地群帮卖褐煤N71.51[2]
    临沧盆地群勐托褐煤N7.17−32.5/20.2[18]
    兰坪—普洱(III)景谷盆地群景谷褐煤N0.1−3.9/0.952[10]
    景谷盆地群景谷长焰煤N0.3−12.6/1.579[10]
    景洪盆地群普洱褐煤N0.1−0.7/0.34[10]
    景洪盆地群景洪褐煤N2.7−9.3/6.75[10]
    华坪—楚雄(IV)祥云煤田云南驿褐煤N10−31.2/15.55*
    一平浪煤田一平浪褐煤N12−27/17.18*
    一平浪煤田一平浪肥煤T0.5−0.6/0.69[10]
    一平浪煤田姚安褐煤N11−21.8/14.73*
    一平浪煤田峨山塔甸无烟煤T7.9−68.3/27.656*
    昆明—建水(V)昆明盆地群寻甸先锋褐煤N9.3−59.3/18.143*
    昆明盆地群宜良可保褐煤N0.2−13.1/4.370[10]
    开远盆地小龙潭褐煤N1.83−16.8/7.283[2]
    建水盆地甸尾褐煤N500−1100/>500*
    建水盆地甸尾褐煤N306−700/>306[6]
    建水盆地/褐煤N2.8−73/10.5111[10]
    昭通—曲靖(VI)宣富煤田恩洪焦煤P0.1−2.5/0.240[10]
    弥勒盆地跨竹褐煤N31.2−197/118.610*
    蒙自—文山(VII)蒙自盆地蒙自南褐煤N10.7−141.5/51.320*
    蒙自盆地/褐煤N0.14−141.5/36.8223[10]
    邱砚煤田邱北长焰煤N38.3−64.7/55.75[10]
    邱砚煤田砚山干河长焰煤N45−314.7/101.112*
    邱砚煤田砚山干河长焰煤N0.1−315.8/66.3115[10]
    邱砚煤田/贫煤P111−178/1557[19]
    邱砚煤田砚山贫煤P1671[20]
    马关盆地马关长焰煤N0.2−6.5/3.88[10]
    注: *表示本文收集数据;/未知采样地区; —未知煤样数目
    下载: 导出CSV
  • [1]

    蔡煜琦, 张金带, 李子颖, 等. 中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6):1051-1069. CAI Y Q, ZHANG J D, LI Z Y, et al. Outline of uranium resources characteristics and metallogenetic regularity in China[J]. Acta Geologica Sinica, 2015, 89(6):1051-1069. doi: 10.3969/j.issn.0001-5717.2015.06.005

    [2]

    黄文辉, 唐修义. 中国煤中的铀、钍和放射性核素[J]. 中国煤田地质, 2002, 14(S1): 55-63.

    HUANG W H, TANG X Y. Uranium, thorium and other radionuclides in coal of China[J]. Coal Geology of China, 2002, 14(suppl): 55-63.

    [3]

    Dai S F, Ren D Y, Chou C L, et al. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94:3-21. doi: 10.1016/j.coal.2011.02.003

    [4]

    姚振凯. 中国成煤大地构造演化与煤中铀的成矿作用[J]. 大地构造与成矿学, 1988, 12(3): 185–196.

    YAO Z K. Tectonic evolution of coal-forming processes in China and uranium mineralization in coalbeds[J]. Geotectonica et Metallogenia, 12(3): 185–196.

    [5]

    刘章月, 董文明, 刘红旭. 新疆萨瓦布其地区含铀煤成因分析[J]. 铀矿地质, 2011, 27(6):345-351. LIU Z Y, DONG W M, LIU H X. Analysis on genesis of uranium-bearing coal in Sawabugi area, Xinjiang[J]. Uranium Geology, 2011, 27(6):345-351. doi: 10.3969/j.issn.1000-0658.2011.06.005

    [6]

    袁三畏. 中国煤质论评[M]. 北京: 煤炭工业出版社, 1999: 1-306.

    YUAN S W. Review of coal quality in China[M]. Beijing: Coal Industry Press, 1999: 1-306.

    [7]

    代世峰, 任德贻, 孙玉壮, 等. 鄂尔多斯盆地晚古生代煤中铀和钍的含量与逐级化学提取[J]. 煤炭学报, 2004(增刊): 56-60.

    DAI S F, REN D Y, SUN Y Z, et al. Concentration nd the sequential chemical extraction procedures of U and Th in the Paleozoic coals from the Ordos basin[J]. Journal of China Coal Science, 2004(Suppl): 56-60.

    [8]

    孙玉壮, 赵存良, 李彦恒, 等. 煤中某些伴生金属元素的综合利用指标探讨[J]. 煤炭学报, 2014, 39(4):744-748. SUN Y Z, ZHAO C L, LI Y H, et al. Minimum mining grade of the selected trace elements in Chinese coal[J]. Journal of China Coal Society, 2014, 39(4):744-748. doi: 10.13225/j.cnki.jccs.2013.1718

    [9]

    周贤青, 秦勇, 陆鹿. 中国煤型铀地质–地球化学研究进展[J]. 煤田地质与勘探, 2019, 47(4):45-53. ZHOU X Q, QIN Y, LU L. Advances on geological-geochemical research of coal-type uranium in China[J]. Coal Geology & Exploration, 2019, 47(4):45-53. doi: 10.3969/j.issn.1001-1986.2019.04.008

    [10]

    席维实. 云南部分地区煤中铀含量概况[J]. 中国煤田地质, 1992, 4(3):356-358. XI W S. Overview of uranium content in coals in some areas of Yunnan[J]. Coal Geology of China, 1992, 4(3):356-358.

    [11]

    张骞, 夏彧, 伍皓, 等. 云南煤系铀资源潜力分析与典型矿床铀赋存状态研究[J]. 矿产综合利用, 2021(5):106-112. ZHANG Q, XIA Y, WU H, et al. Potential analysis of uranium resources in coal measures and study on uranium occurrences of typical ore deposits in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):106-112. doi: 10.3969/j.issn.1000-6532.2021.05.016

    [12]

    伍皓, 江新胜, 余谦, 等. “煤铀兼探”找矿新思路在云南的初次应用—以滇西户撒盆地铀矿勘探为例[J]. 沉积与特提斯地质, 2016, 36(4):106-110. WU H, JIANG X S, YU Q, et al. Coal-uranium exploration in the Husa Basin, western Yunnan: a new approach[J]. Sedimentary Geology and Tethyan Geology, 2016, 36(4):106-110. doi: 10.3969/j.issn.1009-3850.2016.04.015

    [13]

    罗星云, 张永宏. 云南新近纪聚煤盆地特征及成因类型[J]. 中国煤炭地质, 2013, 25(9):10-17. LUO X Y, ZHANG Y H. Neogene coal-accumulation basin characteristics and genetic types in Yunnan Province[J]. Coal Geology of China, 2013, 25(9):10-17. doi: 10.3969/j.issn.1674-1803.2013.09.03

    [14]

    罗俊, 袁玺, 林玉成, 等. 云南省煤炭及煤层气聚集规律与资源潜力[M]. 北京: 地质出版社, 2017: 1–406.

    LUO J, YUAN X, LIN Y C, et al. Accumulation regularity and resource potential of coal and coalbed methane in Yunnan Province[M]. Beijing: Geological publishing house, 2017: 1–406.

    [15]

    夏彧, 伍皓, 周恳恳, 等. 滇西户撒盆地新近系褐煤微量元素地球化学特征[J]. 沉积与特提斯地质, 2018, 38(2):94-102. XIA Y, WU H, ZHOU K K, et al. Geochemical signatures of the trace elements in the Neogene lignites in the Husa Basin, western Yunnan[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(2):94-102. doi: 10.3969/j.issn.1009-3850.2018.02.011

    [16]

    Hu R Z, Qi H W, Zhou M F, et al. Geological and geochemical constraints on the origin of the giant Lincang coal seam–hosted germanium deposit, Yunnan, SW China: a review[J]. Ore Geology Reviews, 2009, 36:221-234. doi: 10.1016/j.oregeorev.2009.02.007

    [17]

    李洋. 云南临沧地区煤中微量元素地球化学研究[D]. 合肥: 安徽理工大学, 2007: 1–71.

    LI Y. Geochemistry of trace elements in coal from Lincang area, Yunnan province[D]. Hefei: Anhui university of science and technology, 2017: 1–71.

    [18]

    陈健, 陈萍, 姚多喜, 等. 云南省临沧市勐托新近系褐煤的微量元素地球化学特征[J]. 地学前缘, 2016, 23(3):83-89. CHEN J, CHEN P, YAO D X, et al. Geochemistry of trace elements in the Mengtuo Neogene lignite of Lincang, western Yunnan[J]. Earth Science Frontiers, 2016, 23(3):83-89. doi: 10.13745/j.esf.2016.03.011

    [19]

    Dai S F, Ren D Y, Zhou Y P, et al. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation[J]. Chemical Geology, 2008, 255(1):182-194.

    [20]

    杨宗. 云南砚山晚二叠世煤中V、Cr、Mo和U的丰度与赋存状态[J]. 矿物岩石地球化学通报, 2009, 28(3):268-271. YAN Z. Occurrence and abundance of V, Cr, Mo and U in the late Permian coals from Yanshan, Yunnan, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(3):268-271. doi: 10.3969/j.issn.1007-2802.2009.03.011

    [21]

    Ketris M P, Yudovich Y E. Estimations of clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2):135-148. doi: 10.1016/j.coal.2009.01.002

    [22]

    喻亦林. 滇西临沧褐煤放射性水平及区域污染分析[J]. 地球与环境, 2007, 35(2):147-153. YU Y L. Analysis of radioactive level of lignite and associated regional pollution in Lincang, West Yunnan[J]. Earth and Environment, 2007, 35(2):147-153. doi: 10.3969/j.issn.1672-9250.2007.02.009

    [23]

    尹金双, 陈功, 刘正义, 等. 云南临沧地区煤中世界特大型锗(铀)矿床有机成矿机理研究[J]. 核工业北京地质研究院年报, 1996, 13:42-53. YIN J S, CHEN G, LIU Z Y, et al. Study on organic metallogenic mechanism of the world super large germanium (uranium) deposit in Lincang Area, Yunnan Province[J]. Annual Report of Beijing Institute of Geology of Nuclear Industry, 1996, 13:42-53.

    [24]

    Dai S F, Seredin V V, Ward C R, et al. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the LatePermian Guiding coalfield, Guizhou, China[J]. Mineralium Deposita, 2015, 50(2):159-186. doi: 10.1007/s00126-014-0528-1

  • 加载中

(1)

(1)

计量
  • 文章访问数:  820
  • PDF下载数:  59
  • 施引文献:  0
出版历程
收稿日期:  2021-12-01
刊出日期:  2023-02-25

目录