-
摘要:
针对国外某镍钴矿资源,在查明矿石性质的基础上,采用"原矿擦洗-旋流器分级-螺旋粗选-摇床精选-磁选除铁"工艺流程,生产应用多年来,在原矿镍钴铬铁品位分别为0.93%、0.18%、3.25%、14.95%的情况下,获得镍钴回收率分别达到97.60%和96.08%,铬含量仅1.19%的轻矿物,为后续湿法回收镍钴创造了有利条件,同时获得铬品位32.13%,回收率62.62%的铬精矿,铁品位61.94%,铁回收率24.48%的铁精矿。实现了此镍钴矿资源的综合回收利用。
Abstract:Aiming at a foreign nickel-cobalt ore resource, based on the identification of the nature of the ore, the process flow of “raw ore scrubbing-cyclone classification-spiral roughing-shaking table selection-magnetic separation and iron removal” is adopted. For many years of production and application of the process flow, when the grades of nickel, cobalt, and ferrochromium of the raw ore are 0.93%, 0.18%, 3.25%, and 14.95%, respectively, the nickel and cobalt recovery rates of light minerals reach 97.60% and 96.08%, respectively, and the chromium content is only 1.19%, which creates favorable conditions for the subsequent wet recovery of nickel and cobalt. At the same time, a chromium concentrate with a chromium grade of 32.13% and a recovery rate of 62.62%, an iron concentrate with an iron grade of 61.94% and an iron recovery rate of 24.48% were obtained, realizing the comprehensive recycling and utilization of this nickel-cobalt ore resource.
-
Key words:
- Nickel /
- Cobalt /
- Chromite /
- Magnetite /
- Magnetic separation /
- Gravity separation
-
表 1 原矿主要元素分析结果/%
Table 1. Analysis results of main elements of raw ore
Ni Co Cr Fe S SiO2 MgO Al2O3 P 0.84 0.16 2.71 12.08 0.09 40.21 10.17 9.26 0.016 表 2 原矿矿物组成定量检测结果
Table 2. Quantitative test results of mineral composition of raw ore
铬铁矿 磁铁矿 假象赤铁矿 黄铁矿 石英 隐晶质粘土矿物 碳酸盐矿物 长石 云母 合计 8.26 6.92 2.80 0.16 26.39 39.06 13.60 1.39 1.42 100.00 表 3 镍和钴的平衡分配
Table 3. Balanced distribution of nickel and cobalt
矿物 含量/% 品位/% 占有率/% Ni Co Ni Co 铬铁矿 18.12 0.05 0.027 1.11 3.13 磁铁矿 9.92 0.03 0.031 0.37 1.97 假象赤铁矿 2.80 0.09 0.048 0.31 0.86 石英 26.39 0.10 0.051 3.35 8.62 粘土/碳酸盐等 42.77 1.78 0.312 94.86 85.42 合计 100.00 0.80 0.156 100.00 100.00 表 4 主要矿物的密度[1]
Table 4. Density of main minerals
矿物 密度/(g·cm-3) 矿物 密度/(g·cm-3) 矿物 密度/(g·cm-3) 铬铁矿 4.9~5.1 隐晶质粘土矿物 2.2~2.4 石英 2.5~2.6 磁铁矿 4.9~5.2 碳酸盐矿物 2.6~2.8 云母 2.7~3.1 表 5 主要矿物的比磁化系数[10]
Table 5. Specific magnetic susceptibility of main minerals
矿物 比磁化系数SI制/(m3·kg-1) 矿物 比磁化系数SI制/(m3·kg-1) 矿物 比磁化系数SI制/(m3·kg-1) 铬铁矿 (6.3~8.8)×10-7 隐晶质粘土矿物 (3.8~11.3)×10-7 石英 2.5×10-9 磁铁矿 1156×10-6 碳酸盐矿物 3.8×10-9 长石 62×10-9 表 6 旋流器分级归类研究结果
Table 6. Research results of the classification and classification of cyclones
产品名称 产率/% 品位/% 回收率/% Ni Co Cr Fe Ni Co Cr Fe 溢流 63.29 1.03 0.216 0.55 5.34 77.01 83.99 12.89 28.22 沉砂 36.71 0.52 0.071 6.41 23.42 22.99 16.01 87.11 71.78 原矿 100.00 0.85 0.16 2.70 11.98 100.00 100.00 100.00 100.00 表 7 重选归队实验结果
Table 7. Results of re-election test
产品名称 作业产率/% 品位/% 作业回收率/% Ni Co Cr Fe Ni Co Cr Fe 重选精矿 28.25 0.13 0.031 18.64 43.18 7.00 12.33 82.19 52.08 摇床尾矿 31.79 0.63 0.089 1.93 17.02 38.17 39.84 9.58 23.10 螺旋尾矿 39.96 0.72 0.085 1.32 14.55 54.83 47.83 8.23 24.82 沉砂 100.00 0.52 0.071 6.41 23.42 100.00 100.00 100.00 100.00 表 8 弱磁分离铬、铁实验结果
Table 8. Test results of weak magnetic separation of chromium and iron
磁场强度/
T产品
名称作业产率/
%品位/% 作业回收率/% Cr Fe Cr Fe 0.15 铁精矿 41.26 2.19 63.19 4.85 60.35 铬精矿 58.74 30.16 29.16 95.15 39.65 重选精矿 100.00 18.62 43.20 100.00 100.00 0.25 铁精矿 43.29 2.38 62.93 5.52 62.90 铬精矿 56.71 31.09 28.34 94.48 37.10 重选精矿 100.00 18.66 43.31 100.00 100.00 0.30 铁精矿 47.74 2.64 62.16 6.76 68.63 铬精矿 52.26 33.26 25.95 93.24 31.37 重选精矿 100.00 18.64 43.24 100.00 100.00 0.45 铁精矿 52.16 3.96 61.23 11.09 73.68 铬精矿 47.84 34.61 23.85 88.91 26.32 重选精矿 100.00 18.62 43.35 100.00 100.00 表 10 生产指标统计结果
Table 10. Statistical results of production indicators
产品名称 产率/% 品位/% 回收率/% Ni Co Cr Fe Ni Co Cr Fe 铬精矿 6.34 0.21 0.084 32.13 31.26 1.44 2.92 62.62 13.25 铁精矿 5.91 0.15 0.031 2.91 61.94 0.96 1.00 5.28 24.48 轻矿物 87.75 1.03 0.20 1.19 10.61 97.60 96.08 32.10 62.27 原矿 100.00 0.93 0.18 3.25 14.95 100.00 100.00 100.00 100.00 表 9 全流程实验结果
Table 9. Test results of the whole process
产品名称 产率/% 品位/% 回收率/% Ni Co Cr Fe Ni Co Cr Fe 铬精矿 5.42 0.17 0.073 33.35 28.67 1.09 2.40 67.21 12.77 铁精矿 4.95 0.11 0.021 2.32 62.82 0.64 0.63 4.27 25.57 轻矿物 89.63 0.93 0.18 0.86 8.37 98.27 96.97 28.52 61.66 原矿 100.00 0.85 0.16 2.69 12.16 100.00 100.00 100.00 100.00 -
[1] 吴良士, 白鸽, 袁忠信. 矿物与岩石[M]. 北京: 化学工业出版社, 2008.
WU L S, BAI G, YUAN Z X. Minerals and rocks[M]. Beijing: Chemical Industry Press, 2008.
[2] 张水龙, 刘金艳, 杨林恒, 等. 吉林铜钴镍多金属硫化矿的生物浸出试验研究[J]. 矿产综合利用, 2020(1):50-53. ZHANG S L, LIU J Y, YANG L H, et al. Bioleaching of copper-cobalt-nickel polymetallic sulfide ores in Jilin[J]. Multipurpose Utilization of Mineral Resources, 2020(1):50-53. doi: 10.3969/j.issn.1000-6532.2020.01.010
[3] 龚强, 贺国春, 王飞龙. 新疆某镍钴矿选矿试验研究[J]. 世界有色金属, 2018(9):67+69. GONG Q, HE G C, WANG F L. Experimental research on beneficiation of a nickel-cobalt ore in Xinjiang[J]. World Nonferrous Metals, 2018(9):67+69. doi: 10.3969/j.issn.1002-5065.2018.09.040
[4] 徐晶晶, 张涛, 郭洪周, 等. 大洋钴资源前景与开发展望[J]. 矿产综合利用, 2019(6):13-17. XU J J, ZHANG T, GUO H Z, et al. Resource and development prospects of oceanic cobalt[J]. Multipurpose Utilization of Mineral Resources, 2019(6):13-17.
[5] 杨文彪, 张永梅. 粗精再磨工艺在某高铜镍比矿石选矿中的研究及应用[J]. 矿产综合利用, 2020(3):121-125. YANG W B, ZHANG Y M. Research and application of rough concentrate and regrinding technology in beneficiation of a high copper nickel ratio ore[J]. Multipurpose Utilization of Mineral Resources, 2020(3):121-125. doi: 10.3969/j.issn.1000-6532.2020.03.020
[6] 张本曰, 刘丹, 郭锐, 等. 含镍蛇纹石的综合利用现状[J]. 矿产综合利用, 2020(4):13-20. ZHANG B Y, LIU D, GUO R, et al. Comprehensive utilization status of nickel-containing serpentine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):13-20. doi: 10.3969/j.issn.1000-6532.2020.04.003
[7] 陈向, 廖德华. 某铬铁矿磁浮联合回收实验研究[J]. 矿产综合利用, 2021(1):61-64. CHEN X, LIAO D H. Experimental study on combined recovery of chromite by magnetic levitation[J]. Multipurpose Utilization of Mineral Resources, 2021(1):61-64. doi: 10.3969/j.issn.1000-6532.2021.01.009
[8] 邹坚坚, 胡真, 汪泰, 等. 粤北某极低品位伴生稀有金属矿产资源综合利用研究[J]. 矿冶工程, 2019, 39(4):63-67+71. ZOU J J, HU Z, WANG T, et al. Research on comprehensive utilization of a very low-grade associated rare metal mineral resources in North Guangdong[J]. Mining and Metallurgical Engineering, 2019, 39(4):63-67+71. doi: 10.3969/j.issn.0253-6099.2019.04.015
[9] 胡岳华, 冯其明. 矿物资源加工技术与设备[M]. 北京: 科学出版社, 2006.
HU Y H, FENG Q M. Mineral resources processing technology and equipment [M]. Beijing: Science Press, 2006.
[10] 王常任. 磁电选矿[M]. 北京: 冶金工业出版社, 2008.
WANG C R. Magnetoelectric beneficiation[M]. Beijing: Metallurgical Industry Press, 2008.