黄铁矿浮选活化机理研究进展

李诗浩, 马强, 王龙, 杨旭. 黄铁矿浮选活化机理研究进展[J]. 矿产综合利用, 2023, 44(2): 124-130, 140. doi: 10.3969/j.issn.1000-6532.2023.02.021
引用本文: 李诗浩, 马强, 王龙, 杨旭. 黄铁矿浮选活化机理研究进展[J]. 矿产综合利用, 2023, 44(2): 124-130, 140. doi: 10.3969/j.issn.1000-6532.2023.02.021
Li Shihao, Ma Qiang, Wang Long, Yang Xu. Research Progress on Activation Mechanism of Pyrite Flotation[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 124-130, 140. doi: 10.3969/j.issn.1000-6532.2023.02.021
Citation: Li Shihao, Ma Qiang, Wang Long, Yang Xu. Research Progress on Activation Mechanism of Pyrite Flotation[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 124-130, 140. doi: 10.3969/j.issn.1000-6532.2023.02.021

黄铁矿浮选活化机理研究进展

  • 基金项目: 国家大学生创新创业训练计划创新训练项目(S202210497334)。
详细信息
    作者简介: 李诗浩(2001-),男,研究方向为矿物加工工程
    通讯作者: 杨旭(1997-),男,硕士,研究方向为矿物加工工程
  • 中图分类号: TD951

Research Progress on Activation Mechanism of Pyrite Flotation

More Information
  • 黄铁矿是自然界中储量最丰富的硫化矿之一,常与铅、锌、铜等价值较高的硫化矿共生。针对被高碱抑制的黄铁矿,常使用活化剂改善其可浮性,从而活化选硫,而活化剂对黄铁矿表面性质的影响是研究其作用机理的关键。本文详细阐述了黄铁矿晶体性质,包括其微观晶体结构、能带结构、态密度、Mulliken布局、电化学性质等;以黄铁矿表面物种演变为切入点,介绍了表面杂质掺杂、空位缺陷和表面氧化对其可浮性的影响。综述了离子活化和活化药剂的作用机理:铜、铅离子活化会在黄铁矿表面形成吸附活性位点,促进捕收剂吸附;酸类活化剂会清除黄铁矿表面亲水沉淀和氧化产物;盐类活化剂则会与黄铁矿表面原子反应,改变黄铁矿表面性质和水化层结构,从而促进浮选。加强对活化剂作用过程中黄铁矿表面性质的观察、表征、精确计算和模拟,可为黄铁矿的高效清洁活化剂研发、资源合理利用和环境保护提供一定科学依据。

  • 加载中
  • 图 1  黄铁矿晶体结构

    Figure 1. 

    图 2  黄铁矿的能带结构和态密度[6]

    Figure 2. 

    表 1  铵盐和钠盐溶液水解的pH值比较[25]

    Table 1.  Comparison of pH values for hydrolysis of ammonium and sodium salt solutions

    药剂名称(NH4)2SO4Na2SO4NH4HCO3NaHCO3Na2CO3
    pH值678912
    下载: 导出CSV
  • [1]

    罗宿星, 陈华仕, 牟青松, 等. 黄铁矿的吸附性能研究现状及进展[J]. 矿产综合利用, 2020(5):26-33. LUO S X, CHEN H S, MU Q S, et al. Research situation and progress of adsorption properties of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2020(5):26-33.

    [2]

    孙伟, 张英, 覃武林, 等. 不同黄铁矿石灰环境受抑活化研究[J]. 矿产综合利用, 2015: 33-38.

    SUN W, ZHANG Y, QIN W L, et al. Research on inhibited activation of different types of pyrite in the lime enviroment[J]. Multipurpose Utilization of Mineral Resources, 2015: 33-38.

    [3]

    Prince, K C, Matteucci M, Kuepper K, et al. Core-level spectroscopic study of FeO and FeS2[J]. Physical Review B, 2005, 71:085102. doi: 10.1103/PhysRevB.71.085102

    [4]

    林清泉, 詹信顺, 张红华, 等. 辉钼矿和黄铁矿的晶体结构与表面性质研究[J]. 矿冶工程, 2019, 39:40-45. LIN Q Q, ZHAN X X, ZHANG H H, et. al. Crystal structures and surface properties of molybdenite and pyrite[J]. Mining and Metallurgical Engineering, 2019, 39:40-45. doi: 10.3969/j.issn.0253-6099.2019.03.010

    [5]

    Schlegel P, Wachter P. Optical properties, phonons and electronic structure of iron pyrite[J]. Journal of Physics C Solid State Physics, 1976, 9(17):3363. doi: 10.1088/0022-3719/9/17/027

    [6]

    李玉琼, 陈建华, 陈晔. 空位缺陷黄铁矿的电子结构及其浮选行为[J]. 物理化学学报, 2010, 26(5):1435-1441. LI Y Q, CHEN J H, CHEN Y. Electronic structures and flotation behavior of pyrite containing vacancy defects[J]. Acta Physico-Chimica Sinica, 2010, 26(5):1435-1441. doi: 10.3866/PKU.WHXB20100332

    [7]

    苏超, 申培伦, 李佳磊, 等. 黄铁矿浮选的抑制与解抑活化研究进展[J]. 化工进展, 2019, 38:1921-1929. SU C, SHEN P L, LI J L, et al. A review on depression and derepression of pyrite flotation[J]. Chemical Industry and Engineering Progress, 2019, 38:1921-1929. doi: 10.16085/j.issn.1000-6613.2018-1351

    [8]

    Savage K S, Stefan D, Lehner S W. Impurities and heterogeneity in pyrite: Influences on electrical properties and oxidation products[J]. Applied Geochemistry, 2008, 23(2):103-120. doi: 10.1016/j.apgeochem.2007.10.010

    [9]

    张芹. 铅锑锌铁硫化矿电化学浮选行为及表面吸附的研究 [D] 长沙: 中南大学, 2004.

    ZHANG Q. The study of electrochemistry flotation behavior and surface adsorption of lead-antimony-zinc-iron sulfides [D]. Changsha: Central South University, 2004.

    [10]

    Yin W, Xue J, Li D, et al. Flotation of heavily oxidized pyrite in the presence of fine digenite particles[J]. Minerals Engineering, 2018, 115:142-149. doi: 10.1016/j.mineng.2017.10.016

    [11]

    Li Y, Chen J, Guo J. DFT study of influences of As, Co and Ni impurities on pyrite (100) surface oxidation by O2 molecule[J]. Chemical Physics Letters, 2011, 4(511):389-392.

    [12]

    Hicyilmaz C, Emre Altun N, Ekmekci Z, et al. Quantifying hydrophobicity of pyrite after copper activation and DTPI addition under electrochemically controlled conditions[J]. Minerals Engineering, 2004, 17(7):879-890.

    [13]

    Pecina E T, Uribe A, Nava F, et al. The role of copper and lead in the activation of pyrite in xanthate and non-xanthate systems[J]. Minerals Engineering, 2005, 19(2):172-179.

    [14]

    Bushell C H G, Krauss C J. Copper activation of pyrite[J]. Canadian Mining and Metallurgical Bulletin, 1962(5):314-318.

    [15]

    Weisener C, Gerson A. Cu(Ⅱ) adsorption mechanism on pyrite: an XAFS and XPS study[J]. Surface and Interface Analysis, 2000, 30:454-458. doi: 10.1002/1096-9918(200008)30:1<454::AID-SIA807>3.0.CO;2-1

    [16]

    赵清平, 蓝卓越, 童雄. 铜离子对闪锌矿、黄铁矿浮选的选择性活化机理研究 [J]. 矿产综合利用, 2021(3): 27-38.

    ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of sphalerite and pyrite by copper [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 27-38.

    [17]

    J O Leppinen. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals[J]. International Journal of Mineral Processing, 1990, 30(3-4):245-263. doi: 10.1016/0301-7516(90)90018-T

    [18]

    Zhang Q, Xu Z, Bozkurt V, et al. Pyrite flotation in the presence of metal ions and sphalerite[J]. International Journal of Mineral Processing, 1997, 52(2):187-201.

    [19]

    Peng Y, Grano S. Effect of grinding media on the activation of pyrite flotation[J]. Minerals Engineering, 2010, 23(8):600-605. doi: 10.1016/j.mineng.2010.02.003

    [20]

    Finkelstein N P. The activation of sulphide minerals for flotation: a review[J]. International Journal of Mineral Processing, 1997, 52(2):81-120.

    [21]

    Sui C C, Stephane H R B, Xu Z, et al. Xanthate adsorption on Pb contaminated pyrite[J]. International Journal of Mineral Processing, 1997, 49(3):207-221.

    [22]

    林榜立, 郭业东, 阙绍娟. 硫化矿活化剂FY01的制备及应用研究[J]. 有色金属(选矿部分), 2014(2):82-86. LIN B L, GUO Y D, QUE S J. Preparation and application of activator FY01 for sulphide ore[J]. Nonferrous Metals (Mineral Processing Section), 2014(2):82-86.

    [23]

    孙伟, 张英, 覃武林, 等. 被石灰抑制的黄铁矿的活化浮选机理[J]. 中南大学学报(自然科学版), 2010, 41:813-818. SUN W, ZHANG Y, QIN W L, et al. Activated flotation of pyrite once depressed by lime[J]. Journal of Central South University, 2010, 41:813-818.

    [24]

    Huang H, Hu Y, Sun W. Activation flotation and mechanism of lime-depressed pyrite with oxalic acid[J]. International Journal of Mining Science and Technology, 2012, 22(1):63-67. doi: 10.1016/j.ijmst.2011.07.007

    [25]

    黄尔君, 冯育武. 铵盐对黄铁矿的活化作用及其机理研究[J]. 有色金属(选矿部分), 1996(2):33-37+41. HUANG E J, FENG Y W. Study on the activation effect mechanism of ammonium salt on pyrite[J]. Nonferrous Metals (Mineral Processing Section), 1996(2):33-37+41.

    [26]

    邓海波. 铅锌尾矿中被石灰强烈抑制的黄铁矿活化浮选回收研究[J]. 有色金属(选矿部分), 1998(1):3-5. DENG H B. Study on recovery of activated flotation of pyrite strongly inhibited by lime in lead-zinc tailings[J]. Nonferrous Metals (Mineral Processing Section), 1998(1):3-5.

    [27]

    昆明理工大学. 一种铜硫分离中黄铁矿的解抑活化方法[P] 中国: CN109261364 A, 2018-08-17.

    Kunming University of Science and Technology. Method for depressing and activating pyrite in copper-sulfur separation [P], China: CN109261364 A, 2018-08-17.

    [28]

    昆明理工大学. 一种硫化铁矿的活化方法[P] 中国: CN109261371 A, 2019-01-25.

    Kunming University of Science and Technology. Method for activating iron sulfide ore [P], China: CN109261371 A, 2019-01-25.

    [29]

    Hassas B V, Miller J D. The effect of carbon dioxide and nitrogen on pyrite surface properties and flotation response[J]. Minerals Engineering, 2019, 144:106048. doi: 10.1016/j.mineng.2019.106048

    [30]

    江西理工大学. 一种受石灰抑制硫铁矿的临界氧化活化方法[P] 中国: CN112076884 A, 2020-09-01.

    Jiangxi University of Science and Technology. Critical oxidation activation method of pyrite inhibited by lime[P], China: CN112076884 A, 2020-09-01.

    [31]

    李玉琼, 陈建华, 蓝丽红, 等. 氧分子在黄铁矿和方铅矿表面的吸附[J]. 中国有色金属学报, 2012, 22:1184-1194. LI Y Q, CHEN J H, LAN L H, et al. Adsorption of O2 on pyrite and galena surfaces[J]. , The Chinese Journal of Nonferrous Metals, 2012, 22:1184-1194. doi: 10.19476/j.ysxb.1004.0609.2012.04.029

    [32]

    Li Y, Chen J, Chen Y, et al. DFT Simulation on Interaction of H2O Molecules with ZnS and Cu-Activated Surfaces[J]. The Journal of Physical Chemistry C, 2019, 123:3048-3057. doi: 10.1021/acs.jpcc.8b12273

  • 加载中

(2)

(1)

计量
  • 文章访问数:  1362
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2021-03-13
刊出日期:  2023-04-25

目录