攀西某钒钛铁精矿矿物特性及提质

陈福林, 蔡先炎, 李硕, 吴宁, 王志杰. 攀西某钒钛铁精矿矿物特性及提质[J]. 矿产综合利用, 2023, 44(3): 1-6, 13. doi: 10.3969/j.issn.1000-6532.2023.03.001
引用本文: 陈福林, 蔡先炎, 李硕, 吴宁, 王志杰. 攀西某钒钛铁精矿矿物特性及提质[J]. 矿产综合利用, 2023, 44(3): 1-6, 13. doi: 10.3969/j.issn.1000-6532.2023.03.001
Chen Fulin, Cai Xianyan, Li Shuo, Wu Ning, Wang Zhijie. Mineral Characteristics Research and Tests of Improving Quality of Vanadium Titanium Iron Concentrate in Panxi Area[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 1-6, 13. doi: 10.3969/j.issn.1000-6532.2023.03.001
Citation: Chen Fulin, Cai Xianyan, Li Shuo, Wu Ning, Wang Zhijie. Mineral Characteristics Research and Tests of Improving Quality of Vanadium Titanium Iron Concentrate in Panxi Area[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 1-6, 13. doi: 10.3969/j.issn.1000-6532.2023.03.001

攀西某钒钛铁精矿矿物特性及提质

详细信息
    作者简介: 陈福林(1982-),男,工学硕士,高级工程师,主要从事矿产资源综合利用及钒钛磁铁矿选矿领域的科研工作
  • 中图分类号: TD982

Mineral Characteristics Research and Tests of Improving Quality of Vanadium Titanium Iron Concentrate in Panxi Area

  • 这是一篇矿物加工工程领域的论文。利用筛析、偏光显微镜、X射线衍射仪、Zeiss Sigma 500扫描电子显微镜+Bruker能谱仪+AMICS自动矿物分析系统对攀西某钒钛铁精矿样品进行了矿物特性研究。样品主要脉石矿物为磁黄铁矿、粒状钛铁矿及辉石、长石等,粗细粒级TFe、S、SiO2、Al2O3和MgO及脉石矿物含量有较大差异,Fe少量以钛铁矿、磁黄铁矿及非金属矿物存在,Ti主要以钛磁铁矿形式存在,钛铁矿及镁铝尖晶石以格片状、细脉状、细条带状、网格状及针状镶嵌于钛磁铁矿中,且客晶矿物粒度很细,磨矿解离、选别分离及产品后处理难度较大,物理选矿方法降低其TiO2较难。采用磨矿磁选工艺可使钒钛铁精矿TFe品位提高2~3个百分点,提质本质为降低精矿中SiO2、Al2O3、MgO,降幅SiO2>MgO>Al2O3,提质过程精矿TiO2含量虽变化不大,但可使Fe/TiO2由4.29提高至4.50左右,该过程Fe及V金属有一定损失,S具一定的脱除效果。

  • 加载中
  • 图 1  钛磁铁矿显微结构

    Figure 1. 

    图 2  粗粒级钒钛铁精矿中钛磁铁矿与其余矿物连生情况

    Figure 2. 

    图 3  粗细粒级钒钛铁精矿中矿物连生情况

    Figure 3. 

    图 4  提质实验流程

    Figure 4. 

    表 1  矿样化学成分分析结果/ %

    Table 1.  Chemical composition analysis results of the sample

    TFeFeOTiO2V2O5CoSCuNiPbZn
    53.2533.2813.020.562<0.010.840.012<0.01<0.010.045
    SiO2Al2O3CaOMgOMnPAsNa2OK2O/
    3.874.091.142.780.271<0.005<0.010.1040.101/
    下载: 导出CSV

    表 2  矿样粒度分析及主要成分沿粒度分布规律

    Table 2.  Regularities of distribution of chemical components with the changes of grading of the sample

    粒级/mm产率/%品位/%分布率/%
    TFeTiO2V2O5SSiO2Al2O3MgOTFeTiO2V2O5SSiO2Al2O3MgO
    +0.253.2041.7512.670.4370.44412.426.544.532.513.132.491.7610.045.125.10
    -0.25+0.159.7149.3113.380.5230.4286.464.953.499.0110.039.045.1515.8411.7611.92
    -0.15+0.1016.0952.3813.190.5590.5094.404.343.1115.8716.3916.0210.1617.8917.0917.61
    -0.10+0.07414.6953.5013.300.5700.6263.774.152.8714.8115.1014.9211.4214.0014.9314.84
    -0.074+0.04315.4854.0013.060.5790.7092.973.892.6515.7515.6215.9713.6211.6214.7414.44
    -0.043+0.0387.1654.3813.060.5880.8722.673.732.537.337.227.497.744.836.536.37
    -0.03833.6754.7512.500.5681.2003.033.622.5134.7232.5134.0750.1425.7829.8329.73
    合计100.0053.1012.950.5610.8063.964.092.84100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表 3  矿物组成及含量

    Table 3.  Mineral contents and compositions of the sample

    矿物名称含量/%矿物名称含量/%
    钛磁铁矿83.61橄榄石0.36
    钛铁矿3.76黄铁矿0.06
    磁黄铁矿2.18榍石0.51
    钠长石0.05镁橄榄石0.21
    普通辉石2.70铁铝尖晶石0.32
    透辉石1.28黑云母0.02
    钙长石1.03黄铜矿0.05
    绿帘石0.12铁镁铝尖晶石0.06
    角闪石1.22拉长石1.29
    钛辉石1.17合计100.00
    下载: 导出CSV

    表 4  样品Fe、Ti、S元素赋存状态分析结果

    Table 4.  Analysis results of the forms of chemical elements such as Fe and Ti and S in the sample

    矿物名称Fe元素分布率 /%S元素分布率 /%Ti 元分布率 /%
    钛磁铁矿92.250.0081.68
    绿泥石1.090.921.26
    镁橄榄石0.210.000.00
    钛辉石0.680.000.83
    磁黄铁矿2.0398.670.00
    钙长石0.040.000.02
    透辉石0.420.000.33
    钛铁矿2.670.0013.63
    镁铝尖晶石0.030.000.00
    榍石0.100.001.06
    拉长石0.000.000.00
    铁橄榄石0.470.001.18
    硫钴矿0.000.410.00
    合计100.00100.00100.00
    下载: 导出CSV

    表 5  样品中各粒级产品矿物组成及连生关系

    Table 5.  Mineral compositions and intercrescence relationships of all fractions in the sample

    粒级/mm矿物组成连生关系
    +0.15 金属矿物:钛磁铁矿90%左右,磁黄铁矿<1%;
    非金属矿物:5%~10%
    钛磁铁矿:90%以上为单体,10%左右为连生体;连生体大多为与脉石矿物连生,少量与磁黄铁矿连生。
    磁黄铁矿:50%左右为单体;50%左右为连生体;与钛磁铁矿连生的连生体占90%左右,与脉石连生的连生体占10%左右。
    脉石:70%左右为单体,30%左右为连生体;连生体多为与钛磁铁矿连生,少量与磁黄铁矿连生。
    -0.15+0.10 金属矿物:钛磁铁矿94%左右,磁黄铁矿<2%;
    非金属矿物:<4%
    钛磁铁矿:95%以上为单体,5%左右为连生体;与脉石矿物连生的连生体占50%左右,与磁黄铁矿连生的连生体占50%左右。
    磁黄铁矿:70%左右为单体,30%左右为连生体;与钛磁铁矿连生的连生体占90%以上,与脉石连生的连生体占10%左右。
    脉石:80%左右为单体,20%左右为连生体,连生体多为与钛磁铁矿连生,少量与磁黄铁矿连生。
    -0.10+0.074 金属矿物:钛磁铁矿95%左右,磁黄铁矿<2%;
    非金属矿物:<3%
    钛磁铁矿:95%以上为单体,5%左右为连生体;与脉石矿物连生的连生体占50%左右,与磁黄铁矿连生的连生体占50%左右。
    磁黄铁矿:90%左右为单体,10%左右为连生体;与钛磁铁矿连生连生体约占90%,与脉石连生连生体约占10%。
    脉石:80%左右为单体,20%左右为连生体;连生体多为与钛磁铁矿连生,少量与磁黄铁矿连生。
    -0.074+0.038 金属矿物:钛磁铁矿96%左右,磁黄铁矿<2%;
    非金属矿物:<2%
    钛磁铁矿和脉石:基本都为单体,连生体极少;
    磁黄铁矿:95%以上为单体。
    -0.038 金属矿物:钛磁铁矿96%左右,磁黄铁矿<3%;
    非金属矿物:<1%
    钛磁铁矿、磁黄铁矿、脉石基本都为单体,连生体极少。
    下载: 导出CSV

    表 6  提质实验结果

    Table 6.  Beneficiation test results of inproving the quality of the sample

    磨矿细度产品
    名称
    产率/%品位/%回收率/%
    TFeTiO2V2O5SiO2Al2O3MgOSTFeTiO2V2O5SiO2Al2O3MgOS
    -0.074 mm
    82.62%
    精矿94.4155.7512.640.5822.433.732.720.5997.4394.7298.4763.2086.4984.5984.77
    尾矿5.5924.8811.890.15323.909.848.371.792.575.281.5336.8013.5115.4115.23
    原矿100.0054.0212.600.5583.634.073.040.66100.00100.00100.00100.00100.00100.00100.00
    -0.074 mm
    92.88%
    精矿93.2256.2512.630.5882.363.832.550.5896.8893.7198.1357.6383.7780.4981.67
    尾矿6.7824.8811.660.15423.8610.208.501.793.126.291.8742.3716.2319.5118.33
    原矿100.0054.1212.560.5593.824.262.950.66100.00100.00100.00100.00100.00100.00100.00
    -0.074 mm
    97.40%
    精矿92.9356.5012.750.5771.863.522.420.5896.9693.3998.2849.8681.1377.8380.99
    尾矿7.0723.2511.870.13324.5910.769.061.793.046.611.7250.1418.8722.1719.01
    原矿100.0054.1512.690.5463.474.032.890.67100.00100.00100.00100.00100.00100.00100.00
    -0.045 mm
    90.10%
    精矿92.0356.5612.670.5971.743.452.360.5896.4092.4697.7546.1978.8975.5579.28
    尾矿7.9724.3811.930.15923.4110.668.821.753.607.542.2553.8121.1124.4520.72
    原矿100.0054.0012.610.5623.474.022.870.67100.00100.00100.00100.00100.00100.00100.00
    -0.045 mm
    94.00%
    精矿91.4057.0012.660.5981.713.482.330.5796.0091.7997.4544.0677.5672.8977.38
    尾矿8.6025.2512.040.16623.0710.709.211.784.008.212.5555.9422.4427.1122.62
    原矿100.0054.2712.610.5613.554.102.920.68100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV
  • [1]

    陈福林, 杨晓军, 蔡先炎, 等. 攀西地区白马辉长岩型超低品位钒钛磁铁矿选铁实验研究[J]. 矿产综合利用, 2020(6):26-30. CHEN F L, YANG X J, CAI X Y, et al. Experimental study on iron separation of Baima Gabbro-type ultra-low-grade vanadium-titanomagnetite in Panxi Area[J]. Multipurpose Utilization of Mineral Resources, 2020(6):26-30.

    CHEN F L, YANG X J, CAI X Y, et al. Experimental study on iron separation of Baima Gabbro-type ultra-low-grade vanadium-titanomagnetite in Panxi Area[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 26-30.

    [2]

    陈福林, 杨晓军, 杨道广, 等. 甘肃某低品位钒钛磁铁矿工艺矿物学研究[J]. 矿产综合利用, 2020(6):64-68. CHEN F L, YANG X J, YANG D G, et al. Research on process mineralogy for a low grade vanadium titano-magnetite in Gansu province[J]. Multipurpose Utilization of Mineral Resources, 2020(6):64-68.

    CHEN F L, YANG X J, YANG D G, et al. Research on process mineralogy for a low grade vanadium titano-magnetite in Gansu province[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 64-68.

    [3]

    黑色金属矿产资源强国战略研究专题组. 黑色金属矿产资源强国战略研究[M]. 北京: 科学出版社, 2019.

    Research Group on the Strategy of a Powerful Country in Ferrous Metal Mineral Resources. Research on a Strategy of a Powerful Country in Ferrous Metal Mineral Resources[M]. Beijing:Science Press, 2019.

    [4]

    《现代铁矿石选矿》编委会. 现代铁矿石选矿(上册)[M].合肥: 中国科学技术大学出版社, 2009.

    Editorial Board of "Modern Iron Ore Beneficiation". Modern iron ore beneficiation (Volume One) [M]. Hefei:University of Science and Technology of China Press, 2009.

    [5]

    陈超, 张裕书, 李潇雨, 等. 钛磁铁矿选矿技术研究进展[J]. 矿产综合利用, 2021(3):99-105. CHEN C, ZHANG Y S, LI X Y, et al. Research progress in titanium-magnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021(3):99-105.

    CHEN C, ZHANG Y S, LI X Y, et al. Research progress in titanium-magnetite beneficiation technology [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 99-105.

    [6]

    邹锋, 殷志刚, 陈思竹. 攀枝花白马选铁尾矿综合回收利用研究[J]. 矿产综合利用, 2020(6):19-25. ZOU F, YIN Z G, CHEN S Z. Research on comprehensive utilization of iron tailings from Baima, Panzhihua[J]. Multipurpose Utilization of Mineral Resources, 2020(6):19-25.

    ZOU F, YIN Z G, CHEN S Z. Research on comprehensive utilization of iron tailings from Baima, Panzhihua[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 19-25.

    [7]

    池冬瑞, 顾畔, 严伟平, 等. 红格钒铁精矿提质降杂新技术研究[J]. 矿产综合利用, 2020(6):91-95. CHI D R, GU P, YAN W P, et al. Study on quality improvement and impurities reduction new technology of vanadium-iron concentrate in Hongge[J]. Multipurpose Utilization of Mineral Resources, 2020(6):91-95.

    CHI D R, GU P, YAN W P, et al. Study on quality improvement and impurities reduction new technology of vanadium-iron concentrate in Hongge[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 91-95.

    [8]

    周政, 赵华伦, 李兵荣, 等. 红格某钒钛磁铁矿选矿试验研究[J]. 矿产综合利用, 2018(1):32-35. ZHOU Z, ZHAO H L, LI B R, et al. Experimental study on beneficiation of a vanadium-titanium magnetite in Hongge[J]. Multipurpose Utilization of Mineral Resources, 2018(1):32-35.

    ZHOU Z, ZHAO H L, LI B R, et al. Experimental study on beneficiation of a vanadium-titanium magnetite in Hongge[J]. Multipurpose Utilization of Mineral Resources, 2018(1): 32-35.

  • 加载中

(4)

(6)

计量
  • 文章访问数:  618
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2021-07-23
刊出日期:  2023-06-25

目录