-
摘要:
这是一篇冶金工程领域的论文。随着2020年以来电池级碳酸锂价格的暴涨,黏土型锂矿提锂技术的研究成为了业界关注的热点。本文以黏土型锂矿资源为研究对象,简述了黏土型锂资源的分布概况,概述了近年来国内有关黏土型锂矿的主要提锂工艺方法,分析了不同方法的优点与不足。针对黏土型锂矿浸出液组成情况,指出综合利用浸出液中的铝等有价组分,加强浸出渣的利用研究对黏土型锂矿开发利用的重要性;展望了具有开发利用潜力的黏土型锂矿浸出提锂方法及浸出液除杂、富集锂的方法,以期为研发较经济合理的黏土型锂矿利用工艺技术有所助益。
Abstract:This is an essay in the field of metallurgical engineering. With the sharp increase in battery-grade lithium carbonate prices in 2020, research on lithium extraction technology from clay-type lithium ore has become a topic of great interest in the industry. This article takes clay type lithium resources as the research object, outlines the distribution of clay type lithium resources, summarizes the main lithium extraction processes related to clay type lithium mines in China in recent years, and analyzes the advantages and disadvantages of different methods. Given the composition of the leachate from clay-type lithium ore, it is emphasized that the comprehensive utilization of valuable components such as aluminum in the leachate and more research on the utilization of leaching residue are important for the development and utilization of clay-type lithium ore. This article looks ahead to potential leaching and lithium extraction methods for clay-type lithium ore and methods for removing impurities and enriching lithium in leachate, with the aim of contributing to the development of more economically reasonable utilization processes for clay-type lithium ore.
-
[1] 李成秀, 程仁举, 刘星, 等. 我国锂辉石矿选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5):1-8. LI C X, CHENG R J, LIU X, et al. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8.
LI C X, CHENG R J, LIU X, et al. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 1-8.
[2] 温汉捷, 罗重光, 杜胜江, 等. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报, 2020, 65(1):53-59. WEN H J, LUO C G, DU S J, et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Science China Press, 2020, 65(1):53-59.
WEN H J, LUO C G, DU S J, et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance [J]. Science China Press, 2020, 65(1): 53–59.
[3] 吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2020(1):1-9. WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1):1-9. doi: 10.3969/j.issn.1000-6532.2020.01.001
WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 1-9. doi: 10.3969/j.issn.1000-6532.2020.01.001
[4] 王卓, 黄冉笑, 吴大天, 等. 盐湖卤水型锂矿基本特征及其开发利用潜力评价[J]. 中国地质, 2023, 50(1):102-117. WANG Z, HUANG R X, WU D T, et al. The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits[J]. Geology in China, 2023, 50(1):102-117. doi: 10.12029/gc20220808001
WANG Z, HUANG R X, WU D T, et al. The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits[J]. Geology in China, 2023, 50(1): 102-117. doi: 10.12029/gc20220808001
[5] 于沨, 王登红, 于杨, 等. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 2019, 3(3):354-364. YU F, WANG D H, YU Y, et al. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 2019, 3(3):354-364.
YU F, WANG D H, YU Y, et al. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 2019, 3(3): 354-364.
[6] 朱丽, 顾汉念, 杨永琼, 等. 黏土型锂矿资源提锂工艺研究进展[J]. 轻金属, 2020, 12:8-12. ZHU L, GU H N, YANG Y Q, et al. Research progress of lithium extraction from clay-type lithium ore resources[J]. Light Metals, 2020, 12:8-12.
ZHU L, GU H N, YANG Y Q, et al. Research progress of lithium extraction from clay-type lithium ore resources[J]. Light Metals, 2020, 12: 8-12.
[7] 澎湃. 玉溪小石桥乡这一“钻”, 将改变世界锂资源格局[N]. 科技报, 2020.7. 13.
PENG P. This “drill” in Xiaoshiqiao Township, Yuxi will change the world’s lithium resource pattern[N]. Science and Technology Report, 2020.7. 13.
[8] 云南滇中发现世界级锂资源基地[J]. 中国矿山工程, 2019, 48(3): 78.
World class lithium resources base discovered in central Yunnan[J]. China Mine Engineering, 2019, 48(3): 78.
[9] 范宏鹏, 叶霖, 黄智龙. 铝土矿(岩)中伴生的锂资源[J]. 矿物学报, 2021, 41(4):382-390. FAN H P, YE L, HUANG Z L. The associated Lithium resource in bauxite(bauxite-bearing rock)[J]. Acta Mineralogica Sinica, 2021, 41(4):382-390.
FAN H P, YE L, HUANG Z L. The associated Lithium resource in bauxite(bauxite-bearing rock)[J]. Acta MineralogicaSinica, 2021, 41(4): 382-390.
[10] 孔令安, 李正要, 钟震宇, 等. 黏土型锂矿硫酸铵焙烧—酸浸提锂[J]. 有色金属工程, 2022, 12(12):66-72. KONG L A, LI Z Y, ZHONG Z Y, et al. Extraction of lithium by adding ammonium sulfate roasting-acid leaching from clay-type lithium ore[J]. Nonferrous Metals Engineering, 2022, 12(12):66-72. doi: 10.3969/j.issn.2095-1744.2022.12.009
KONG L A, LI Z Y, ZHONG Z Y, et al. Extraction of lithium by adding ammonium sulfate roasting-acid leaching from clay-type lithium ore[J]. Nonferrous Metals Engineering, 2022, 12(12): 66-72. doi: 10.3969/j.issn.2095-1744.2022.12.009
[11] 钟震宇, 李正要, 孔令安, 等. 黏土型锂矿氯化焙烧—酸浸提锂工艺实验研究[J]. 有色金属(选矿部分), 2023(2):63-70. ZHONG Z Y, LI Z Y, KONG L A, et al. Experimental study on clay-type lithium ore chlorination roasting-acid leaching to extract lithium process[J]. Nonferrous Metals(Mineral Processing Section), 2023(2):63-70.
ZHONG Z Y, LI Z Y, KONG L A, et al. Experimental study on clay-type lithium ore chlorination roasting-acid leaching to extract lithium process[J]. Nonferrous Metals(Mineral Processing Section), 2023(2): 63-70.
[12] YAN Q X, LI X H, WANG Z X, et al. Extraction of lithium from lepidolite using chlorination roasting–water leaching process[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7):1753-1759. doi: 10.1016/S1003-6326(11)61383-6
[13] 李荣改, 宋翔宇, 高志, 等. 河南某地低品位含锂粘土矿提锂新工艺研究[J]. 矿冶工程, 2014, 34(6):81-84. LI R G, SONG X Y, GAO Z, et al. New technology for extracting Li from low-grade lithium -bearing clay in Henan Province[J]. Ming and Metallurgical Engineering, 2014, 34(6):81-84.
LI R G, SONG X Y, GAO Z, et al. New technology for extracting Li from low-grade lithium -bearing clay in Henan Province[J]. Ming and Metallurgical Engineering, 2014, 34(6): 81-84.
[14] 饶峰, 钟文林, 吴春辉, 等. 一种利用离子替换从锂品位极低的粘土型锂矿中提取锂离子的方法: CN115976337A[P]. 2022.
RAO F, ZHONG W L, WU C H, et al. A method for extracting lithium ions from clay-type lithium ore with extremely low lithium grade byion substitution: CN115976337A[P]. 2022.
[15] 李良彬, 陈超, 郁兴国, 等. 一种含锂黏土提锂的方法: CN111893318A[P]. 2020.
LI L B, CHEN C, YU X G, et al. A process of extracting lithium from lithium bearing clay: CN111893318A[P]. 2020.
[16] 苗耀文, 李长东, 乔延超, 等. 一种锂黏土中提取锂的方法: CN114959253A[P]. 2022.
MIAO Y W, LI C D, QIAO Y C, et al. A method for extracting lithium from lithium clay: CN 114959253A[P]. 2022.
[17] 潘爱芳, 马昱昭, 孙悦, 等. 一种活化水溶法从富锂黏土中提取碳酸锂联产铝硅酸钠的方法: CN 113753924A[P]. 2021.
PAN A F, MA Y Z, SUN Y, et al. A method for extracting lithium carbonate from lithium-rich clay using an activated water dissolution method: CN 113753924A[P]. 2021.
[18] YAN Q X, LI, X H, WANG Z X, et al. Extraction of valuable metals from lepidolite[J]. Hydrometallurgy, 2012(117-118):116-118.
[19] 徐璐, 惠博, 龚大兴, 等. 从黏土型锂矿中高效浸出锂的研究[J]. 有色金属(冶炼部分), 2021(9):37-40. XU L, HUI B, GONG D X, et al. Study on high-efficient leaching of lithium from clay-type lithium ore[J]. Nonferrous Metals(Extractive Metallurgy), 2021(9):37-40.
XU L, HUI B, GONG D X, et al. Study on high-efficient leaching of lithium from clay-type lithium ore[J]. Nonferrous Metals(Extractive Metallurgy Section), 2021(9): 37-40.
[20] 张玉良, 孙强, 李进学, 等. 高温焙烧后黏土孔隙与力学特征研究[J]. 岩石力学与工程学报, 2015, 7:1480-1488. ZHANG Y L, SUN Q, LI J X, et al. Pore and mechanical characteristics of high-temperature baked clay[J]. Chinese Journal of Rock Mechanics and Engneering, 2015, 7:1480-1488.
ZHANG Y L, SUN Q, LI J X, et al. Pore and mechanical characteristics of high-temperature baked clay[J]. Chinese Journal of Rock Mechanics and Engneering, 2015, 7: 1480-1488.
[21] 石贵明, 周意超, 陈海蛟, 等. 滇中某沉积黏土型锂矿焙烧—酸浸工艺提锂实验研究[J]. 金属矿山, 2023, 599(1):199-203. SHI G M, ZHOU Y C, CHEN H J, et al. Experiment study on lithium extraction with roasting and acid leaching process for a sedimentary clay-type lithium ore in central Yunnan Province[J]. Metal Ming, 2023, 599(1):199-203.
SHI G M, ZHOU Y C, CHEN H J, et al. Experiment study on lithium extraction with roasting and acid leaching process for a sedimentary clay-type lithium ore in central Yunnan Province[J]. Metal Ming, 2023, 599(1): 199-203.
[22] 朱丽, 杨用晴, 顾汉念, 等. 黏土型锂矿中锂的浸出实验[J]. 有色金属(冶炼部分), 2020(11):35-40. ZHU L, YANG Y Q, GU H N, et al. Study on leaching of lithium from clay-type lithium deposit[J]. Nonferrous Metals(Extractive Metallurgy), 2020(11):35-40.
ZHU L, YANG Y Q, GU H N, et al. Study on leaching of lithium from clay-type lithium deposit[J]. Nonferrous Metals(Extractive Metallurgy), 2020(11): 35-40.
[23] 马保国, 韩磊, 李海南, 等. 掺合料对硫铝酸盐水泥性能的影响[J]. 新型建筑材料, 2014, 41(9):19-21. MA B G, HAN L, LI H N, et al. Impact of mineral admixture on the performance of sulphate aluminum cement[J]. New building Materials, 2014, 41(9):19-21. doi: 10.3969/j.issn.1001-702X.2014.09.005
MA B G, HAN L, LI H N, et al. Impact of mineral admixture on the performance of sulphate aluminum cement[J]. New building Materials, 2014, 41(9): 19-21. doi: 10.3969/j.issn.1001-702X.2014.09.005
[24] 何利华, 赵中伟, 雷云涛, 等. 一种利用默冲电压高效从黏土型锂矿提取锂的方法: CN113528860A [P] 2021.
HE L H, ZHAO Z W, LEI Y T, et al. A method for efficiently extracting lithium from clay-type lithium ore using a silent discharge voltage: CN113528860A [P] 2021.
[25] 欧阳红勇, 解付兵, 李云霞, 等. 一种从黏土型锂矿中选择性提取锂的方法: CN115287469A [P] 2022.
OUYANG H Y, XIE F B, LI Y X, et al. A method for selectively extracting lithium from clay-type lithium ore: CN115287469A [P] 2022.
[26] 刘述平, 熊文良, 冀成庆, 等. 高铝铁含量低浓度稀土溶液利用研究[J]. 矿产综合利用, 2015(6):45-48. LIU S P, XIONG W L, JI C Q, et al. Study on the utilization of low concentration rare earth solution with high aluminum and iron[J]. Multipurpose Utilization of Mineral Resources, 2015(6):45-48.
LIU S P, XIONG W L, JI C Q, et al. Study on the utilization of low concentration rare earth solution with high aluminum and iron[J]. Multipurpose Utilization of Mineral Resources, 2015(6): 45-48.
[27] 蒋朋, 高利坤, 马方通, 等. 低品位含铝矿石酸浸液中回收铝[J]. 矿冶, 2020, 29(2):54-61. JIANG P, GAO L K, MA F T, et al. Recovery of aluminum from acid leaching solution of low-grade aluminum bearing ore[J]. Mining & Metallurgy, 2020, 29(2):54-61.
JIANG P, GAO L K, MA F T, et al. Recovery of aluminum from acid leaching solution of low-grade aluminum bearing ore[J]. Mining & Metallurgy, 2020, 29(2): 54-61.
[28] 黄菀龄, 张海, 邓强, 等. 一种硫酸法提锂浸出液制备铵明矾的方法: CN111573703A[P]. 2020.
HUANG W L, ZHANG H, DENG Q, et al. A method for preparing ammonium alum from sulfuric acid leaching solution: CN111573703A [P]. 2020.
[29] 郝勇, 张启海, 李广汉, 等. 西藏结则茶卡和龙木错盐湖卤水协同提锂研究[J]. 无机盐工业, 2013, 45(6):27-29. HAO Y, ZHANG Q H, LI G H, et al. Synergistic lithium extraction from mixed brines of Jiezechaka and Longmucuo salt lakes in Tibet[J]. Inorganic Chemicals industry, 2013, 45(6):27-29. doi: 10.3969/j.issn.1006-4990.2013.06.009
HAO Y, ZHANG Q H, LI G H, et al. Synergistic lithium extraction from mixed brines of Jiezechaka and Longmucuo salt lakes in Tibet[J]. Inorganic Chemicals industry, 2013, 45(6): 27-29. doi: 10.3969/j.issn.1006-4990.2013.06.009
[30] 李武, 董亚萍. 西藏盐湖卤水成盐过程自然能的应用[J]. 科技导报, 2017, 35(12):39-42. LI W, DONG Y P. Application of natural energy in salt precipitation from Tibetan salt lakes[J]. Science& Technology Review, 2017, 35(12):39-42.
LI W, DONG Y P. Application of natural energy in salt precipitation from Tibetan salt lakes[J]. Science&TechnologyReview, 2017, 35(12): 39-42.
[31] 王德卿, 王海北, 谢铿, 等. TBP-D2EHPA协萃体系分离盐湖卤水中锂镁[J]. 矿冶, 2022, 31(3):96-102. WANG D Q, WANG H B, XIE K, et al. Separation of lithium and magnesium from salt lake brine by TBP-D2EHPA synergistic extraction system[J]. Mining and Metallurgy, 2022, 31(3):96-102. doi: 10.3969/j.issn.1005-7854.2022.03.013
WANG D Q, WANG H B, XIE K, et al. Separation of lithium and magnesium from salt lake brine by TBP-D2EHPA synergistic extraction system[J]. Mining and Metallurgy, 2022, 31(3): 96-102. doi: 10.3969/j.issn.1005-7854.2022.03.013
计量
- 文章访问数: 1251
- PDF下载数: 43
- 施引文献: 0