Process Mineralogy of Niobium Tantalum Iron Ore in Hubei
-
摘要:
这是一篇工艺矿物学领域的论文。锂、铍、铌、钽等稀有金属作为国家战略性新兴资源,主要应用于国防、航空、航天等工业领域,近年来备受地质学家的关注。湖北某地铌钽铁矿为含铌粗面质火山岩及火山碎屑岩矿床,本文对该矿石进行了系统的工艺矿物学研究,查明矿石中主要含铌的矿物有铌铁矿,铌铁金红石、赤褐铁矿和钛铁矿、黄铁矿等,铌铁矿为该矿石选别铌精矿的主要回收矿物。大部分铌矿物嵌布粒度均小于0.04 mm,铌铁矿粒度微细,多为0.5~8 μm,但在-0.037 mm 90%时单体解离度可达71.11%,可考虑用磁选方法分离铌铁矿和脉石矿物;矿石中脉石矿物以绢云母、斜长石为主,磨细后泥化严重,应注意泥级物质团聚对选矿实验的影响。
Abstract:This is an essay in the field of process mineralogy. Rare metals such as lithium, beryllium, niobium and tantalum, as national strategic emerging resources, are mainly used in industrial fields such as national defense, aviation and aerospace, and have attracted the attention of geologists in recent years. A niobium tantalite deposit in Hubei Province is a niobium-bearing trachytic volcanic rock and pyroclastic rock deposit. In this paper, a systematic process mineralogical study is carried out on the ore. It is found that the main niobium-containing minerals in the ore are niobium iron ore, niobium iron rutile, hematite and limonite, ilmenite and pyrite. Niobium iron ore is the main recovered mineral for the separation of niobium concentrate. The embedded particle size of most niobium minerals is less than 0.04 mm, and the particle size of niobium iron ore is fine, mostly 0.5 ~ 8 μm. However, at 90% of -0.037 mm, the monomer dissociation can reach 71.11%. Magnetic separation can be considered to separate niobate and gangue minerals; Gangue minerals in the ore are mainly sericite and plagioclase, which are seriously argillized after grinding. Attention should be paid to the influence of mud grade material agglomeration on beneficiation test.
-
Key words:
- Process mineralogy /
- Niobium-tantalite /
- Niobium-iron rutile /
- Vein minerals
-
表 1 矿石化学分析结果
Table 1. Mineral chemical analysis results
Na2O MgO Al2O3 SiO2 P2O5 SO3 CaO TiO2 Mn Fe2O3 ZnO 3.303 1.018 23.311 56.725 0.175 0.073 0.139 0.413 0.166 3.537 0.018 SrO Y2O3 ZrO2 Nb2O5 BaO Ta2O5 Rb2O CuO ZnO ThO2 0.026 0.002 0.328 0.225 0.625 0.015 0.025 0.011 0.018 0.005 表 2 矿石中矿物组成及相对含量/%
Table 2. Mineral composition and relative content
矿物名称 含量/% 矿物名称 含量/% 绢云母 67.40 锆石 0.26 石英 15.22 独居石 0.04 斜长石 11.78 褐帘石 0.04 FeO(赤褐铁矿) 1.60 铌铁金红石 0.03 钾长石 2.55 方解石 0.01 磷灰石 0.21 铌铁矿 0.20 磁黄铁矿 0.20 硬猛矿 0.08 黄铁矿 0.001 钛铁矿 0.05 表 3 主要含铌矿物
Table 3. Main niobium bearing minerals
矿物种类 亚类 理论化学式 Nb2O5理论含量/% Nb2O5实测含量/% 铌铁矿 含钽铌铁矿 (Mn,Fe)(Ta,Nb)2O6 Ta2O5<50,
Nb2O5>5072.57
(探针测量数据)金红石 铌铁金红石 (Ti,Nb,Fe3+)3O6 1~20 15.50
(探针测量数据)金红石 TiO2 - 赤(褐)铁矿 赤铁矿 Fe2+Fe3+2O4 - 0.02
(探针测量数据)褐铁矿 FeO·OH - 钛铁矿 - (Mn,Fe)TiO3 - 0.02
(探针测量数据)黄铁矿/磁黄铁矿 黄铁矿 FeS2 - 0~0.5 磁黄铁矿 FeS - 硬锰矿 - (Ba,H2O)2Mn5O10 - 0~0.28 绢云母 - K{Al2[AlSi3O10](OH)2} - 0~0.23 钠长石 - NaAlSi3O8 - 0~0.1 钾长石 - K[AlSi3O8] - 0~0.05 石英 - SiO2 - 0~0.08 注:表中Nb2O5实测含量仅代表能谱或探针测量、换算的铌氧化物数据。 表 4 铌铁矿电子探针分析结果/%
Table 4. Results of electron microprobe analysis of niobium iron mineral
分析点 SiO2 FeO TiO2 P2O5 MnO SnO2 Nb2O5 Ta2O5 1 0.509 11.373 1.807 0.019 7.948 0.021 71.717 3.01 2 0.329 17.435 1.387 0 2.447 0 73.437 2.802 平均 0.419 14.404 1.597 0.0095 5.1975 0.0105 72.577 2.906 表 5 铌铁金红石探针分析结果/%
Table 5. Analysis results of niobium iron rutile probe
分析点 SiO2 FeO TiO2 P2O5 MnO SnO2 Nb2O5 Ta2O5 1 0 6.128 73.327 0.011 0 0.03 15.4 2.68 2 0 6.246 74.173 0 0.028 0.057 15.607 2.216 平均 0.00 6.19 73.75 0.01 0.01 0.04 15.50 2.45 表 6 赤褐铁矿电子探针定量分析结果/%
Table 6. Results of electron probe quantitative analysis of hematite and limonite
分析点数 SiO2 FeO TiO2 P2O5 MnO Nb2O5 Ta2O5 1 6.786 67.995 0.079 1.441 0.245 0.021 0.005 2 6.84 68.694 0.042 1.157 0.151 0 0.085 3 5.371 70.509 0.008 1.342 0.609 0.068 0 4 5.597 67.862 0.006 0.842 0.261 0.025 0 5 3.279 74.972 0.014 0.923 0 0 0 6 4.759 68.353 0 6.341 0 0.006 0 平均 5.44 69.73 0.02 2.01 0.21 0.02 0.02 表 7 磁黄铁矿电子探针定量分析结果/%
Table 7. Quantitative analysis results of Pyrrhotite by electron microprobe
分析点数 As La Nb La Fe Ka Co Ka S
KaTa La 1 0.224 0 60.883 60.09 39.574 0.036 2 0.232 0 59.02 0.078 38.619 0.169 3 0.263 0 59.297 0.074 39.225 0 平均 0.24 0 59.733 0.081 39.139 0.068 表 8 主要含铌矿物的嵌布粒度测定结果/%
Table 8. Summary of determination results of embedded particle size of main niobium bearing minerals
粒级/mm 铌铁矿 铌铁金红石 赤褐铁矿 磁黄铁矿 钛铁矿 -0.32+0.16 - - 54.17 - - -0.16+0.08 - - 12.55 - - -0.08+0.04 - - 19.7 - - -0.04+0.02 - - 13.52 9.63 20.68 -0.02+0.01 0.99 27.18 5.73 45.94 56.24 -0.01+0.005 19.27 26.52 2.31 31.08 12.38 -0.005 79.74 46.3 0.37 13.38 10.7 合计 100.00 100.00 100.00 100.00 100.00 表 9 筛析样主要铌矿物解离度测定结果
Table 9. Determination results of dissociation degree of main niobium minerals in sieve analysis samples
粒级/mm 产率% 品位% 解离度% Nb2O5 Ta2O5 CeO2 铌铁矿 铌铁金红石 赤褐铁矿 +0.074 31.46 0.26 0.015 0.037 0 2.60 37.46 -0.074+0.038 3.05 0.25 0.013 0.052 2.87 5.50 63.16 -0.038 65.49 0.22 0.012 0.00765 48.83 60.21 84.63 合计 100.0 0.234 0.013 0.018 32.07 40.42 69.14 表 10 不同磨细度样品主要铌矿物解离度测定结果
Table 10. Determination results of dissociation degree of main niobium minerals in samples with different fineness
样品名称 品位% 单体解离度% Nb2O5 Ta2O5 CeO2 铌铁矿 铌铁金红石 赤褐铁矿 -0.074 mm 90% 0.225 0.015 0.018 60.50 66.36 70.38 -0.037 mm 90% 0.225 0.015 0.018 71.11 75.72 76.01 -
[1] 赖杨, 田恩源, 龚大兴, 等. 川西斯跃武锂-铌-钽稀有金属矿集区自然重砂异常特征[J]. 矿产综合利用, 2019(3):65-70. LAI Y, TIAN E Y, GONG D X, et al. Abnormal characteristics of natural heavy sand in siyuewu lithium niobium tantalum rare metal ore concentration area, Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(3):65-70.
LAI Y, TIAN E Y, GONG D X, et al. Abnormal characteristics of natural heavy sand in siyuewu lithium niobium tantalum rare metal ore concentration area, Western Sichuan [J]. Multipurpose Utilization of Mineral Resources, 2019(3): 65-70
[2] 邓攀, 陈玉明, 叶锦华, 等. 全球铌钽资源分布概况及产业发展形势分析[J]. 中国矿业, 2019, 28(4):63-68. DENG P, CHEN Y M, YE J H, et al. Distribution of global niobium tantalum resources and analysis of industrial development situation[J]. China Mining, 2019, 28(4):63-68.
DENG P, CHEN Y M, YE J H, et al. Distribution of global niobium tantalum resources and analysis of industrial development situation [J]. China Mining, 2019, 28(4): 63-68
[3] 许成, 宋文磊, 何晨, 等. 外生稀土矿床的分布、类型和成因概述[J]. 矿物岩石地球化学通报, 2015, 34(2):234-241. XU C, SONG W L, HE C, et al. Overview of distribution, types and genesis of exogenetic rare earth deposits[J]. Bulletin of Mineral and Rock Geochemistry, 2015, 34(2):234-241. doi: 10.3969/j.issn.1007-2802.2015.02.04
XU C, SONG W L, HE C, et al. Overview of distribution, types and genesis of exogenetic rare earth deposits [J]. Bulletin of Mineral and Rock Geochemistry, 2015, 34(2): 234-241. doi: 10.3969/j.issn.1007-2802.2015.02.04
[4] 赵延朋, 卢见昆, 杨人毅, 等. 老挝XK离子吸附型稀土矿床斑状二长花岗岩地球化学特征及地质意义[J]. 矿产与地质, 2019, 33(2):213-219. ZHAO Y P, LU J K, YANG R Y, et al. Geochemical characteristics and geological significance of porphyritic monzogranite of XK ion adsorption rare earth deposit in Laos[J]. Minerals and Geology, 2019, 33(2):213-219.
ZHAO Y P, LU J K, YANG R Y, et al. Geochemical characteristics and geological significance of porphyritic monzogranite of XK ion adsorption rare earth deposit in Laos [J]. Minerals and Geology, 2019, 33(2): 213-219.
[5] 方继专. 蒙古某稀土矿床的矿石类型及其成分特征和成因[J]. 国外花岗岩类地质与矿产, 1989(3):14-18. FANG J Z. Ore type, composition characteristics and genesis of a rare earth deposit in Mongolia[J]. Granite Geology and Minerals Abroad, 1989(3):14-18.
FANG J Z. Ore type, composition characteristics and genesis of a rare earth deposit in Mongolia [J]. Granite Geology and Minerals Abroad, 1989(3): 14-18.
[6] 陈骏, 陆建军, 陈卫锋, 等. 南岭地区钨锡铌钽花岗岩及其成矿作用[J]. 高校地质学报, 2008, 14(4):459-473. CHEN J, LU J J, CHEN W F, et al. Tungsten tin niobium tantalum granite and its mineralization in Nanling Area[J]. Journal of Geology of Colleges and Universities, 2008, 14(4):459-473.
CHEN J, LU J J, CHEN W F, et al. Tungsten tin niobium tantalum granite and its mineralization in Nanling Area [J]. Journal of Geology of Colleges and Universities, 2008, 14(4): 459-473
[7] 李建康, 李鹏, 王登红, 等. 中国铌钽矿成矿规律[J]. 科学通报, 2019, 64(15): 1545-1566.
LI J K, LI P, WANG D H, et al. Metallogenic regularity of niobium tantalum deposits in China [J]. Science Bulletin, 2019, 64(15): 1545-1566.
[8] 魏均启, 朱丹, 王芳, 等. 湖北断峰山铌钽矿矿物学特征和铌钽赋存状态[J]. 矿物学报, 2021, 41(3):319-326. WEI J Q, ZHU D, WANG F, et al. Mineralogical characteristics and occurrence state of Nb Ta in duanfengshan Nb Ta deposit, Hubei Province[J]. Acta mineralogica Sinica, 2021, 41(3):319-326.
WEI J Q, ZHU D, WANG F, et al. Mineralogical characteristics and occurrence state of Nb Ta in duanfengshan Nb Ta deposit, Hubei Province [J]. Acta mineralogica Sinica, 2021, 41(3): 319-326
[9] 周旻, 曾晓建, 陈正钱. 江西葛源稀有金属矿床铌钽赋存状态[J]. 江西有色金属, 2006(4):1-5. ZHOU M, ZENG X J, CHEN Z Q. Occurrence state of niobium and tantalum in Geyuan rare metal deposit, Jiangxi Province[J]. Jiangxi Nonferrous Metals, 2006(4):1-5.
ZHOU M, ZENG X J, CHEN Z Q. Occurrence state of niobium and tantalum in Geyuan rare metal deposit, Jiangxi Province [J]. Jiangxi Nonferrous Metals, 2006(4): 1-5.
[10] 李潇雨, 惠博, 熊文良, 等. 白云鄂博稀土资源综合利用现状概述[J]. 矿产综合利用, 2021(5):17-24. LI X Y, HUI B, XIONG W L, et al. Overview of comprehensive utilization of rare earth resources in Bayan Obo[J]. Multipurpose Utilization of Mineral Resources, 2021(5):17-24. doi: 10.3969/j.issn.1000-6532.2021.05.003
LI X Y, HUI B, XIONG W L, et al. Overview of comprehensive utilization of rare earth resources in Bayan Obo [J]. Multipurpose Utilization of Mineral Resources, 2021(5): 17-24. doi: 10.3969/j.issn.1000-6532.2021.05.003
[11] 周芳春, 李建康, 刘翔, 等. 湖南仁里铌钽矿床矿体地球化学特征及其成因意义[J]. 地质学报, 2019, 93(6):1392-1404. ZHOU F C, LI J K, LIU X, et al. Geochemical characteristics and genetic significance of orebody in Renli Nb Ta deposit, Hunan[J]. Journal of Geology, 2019, 93(6):1392-1404. doi: 10.3969/j.issn.0001-5717.2019.06.017
ZHOU F C, LI J K, LIU X, et al. Geochemical characteristics and genetic significance of orebody in Renli NB Ta deposit, Hunan [J]. Journal of Geology, 2019, 93(6): 1392-1404. doi: 10.3969/j.issn.0001-5717.2019.06.017
[12] 贾志磊. 甘肃南祁连—北山铌钽铷等稀有金属成矿地质特征与成矿规律的研究[D]. 兰州: 兰州大学, 2016.
JIA Z L. Study on metallogenic geological characteristics and metallogenic law of rare metals such as niobium, tantalum, rubidium and so on in South Qilian Beishan, Gansu [D]. Lanzhou: Lanzhou University, 2016.
[13] 李潇雨, 周满赓, 王婧. 工艺矿物学研究对选矿工艺的重要作用——以宁乡式鲕状赤铁矿为例[J]. 矿产综合利用, 2015(1):45-50. LI X Y, ZHOU M G, WANG J. Important role of process mineralogy research in beneficiation process - taking Ningxiang oolitic hematite as an example[J]. Multipurpose Utilization of Mineral Resources, 2015(1):45-50. doi: 10.3969/j.issn.1000-6532.2015.01.011
LI X Y, ZHOU M G, WANG J. Important role of process mineralogy research in beneficiation process -- Taking Ningxiang oolitic hematite as an example [J]. Multipurpose Utilization of Mineral Resources, 2015(1): 45-50. doi: 10.3969/j.issn.1000-6532.2015.01.011
[14] 陈超, 张裕书, 李潇雨, 等. 钛磁铁矿选矿技术研究进展[J]. 矿产综合利用, 2021(3):99-105. CHEN C, ZHANG Y S, LI X Y, et al. Research progress of titanomagnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021(3):99-105.
CHEN C, ZHANG Y S, LI X Y, et al. Research progress of titanomagnetite beneficiation technology [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 99-105.
[15] 魏均启, 鲁力, 吴健, 等. 湖北竹溪县某铌矿矿物组成及Nb的赋存状态[J]. 矿产综合利用, 2016(2):74-77. WEI J Q, LU L, WU J, et al. Mineral composition and occurrence state of Nb in a niobium ore in Zhuxi County, Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2016(2):74-77. doi: 10.3969/j.issn.1000-6532.2016.02.017
WEI J Q, LU L, WU J, et al. Mineral composition and occurrence state of Nb in a niobium ore in Zhuxi County, Hubei Province [J]. Multipurpose Utilization of Mineral Resources, 2016(2): 74-77. doi: 10.3969/j.issn.1000-6532.2016.02.017
[16] 吕燕, 周家云, 惠博, 等. 吉林某铌钽多金属矿石中元素的赋存状态及对选矿工艺的影响[J]. 矿产综合利用, 2019(2):83-88. LV Y, ZHOU J Y, HUI B, et al. Occurrence state of elements in a niobium tantalum polymetallic ore in Jilin and its influence on beneficiation process[J]. Multipurpose Utilization of Mineral Resources, 2019(2):83-88. doi: 10.3969/j.issn.1000-6532.2019.02.017
LV Y, ZHOU J Y, HUI B, et al. Occurrence state of elements in a niobium tantalum polymetallic ore in Jilin and its influence on beneficiation process [J]. Multipurpose Utilization of Mineral Resources, 2019(2): 83-88. doi: 10.3969/j.issn.1000-6532.2019.02.017