-
摘要:
这是一篇工艺矿物学领域的论文。滇南地区某钒钛磁铁矿矿石不仅有较高的铁、钛,而且伴生钪元素。为实现矿石综合利用,对该矿进行了工艺矿物学研究。采用X 射线荧光光谱分析及化学分析手段,查明了矿石化学成分;利用X 射线衍射分析仪(XRD)、扫描电镜与能谱分析(SEM-EDS)、电子探针(EPMA)等方法,研究了矿物的工艺特征,重点考查了铁、钛元素的赋存状态。研究结果表明:矿石中铁的主要载体矿物为钛磁铁矿、角闪石,其次为钛铁矿;钛的载体矿物主要为钛铁矿,少量赋存于榍石中;钪主要分布在角闪石中。元素配分结果表明,铁、钛的理论品位分别为71.02%、47.40%,理论回收率分别为40.52%、66.48%。分析了影响选矿回收指标的矿物学因素,为后续选冶工艺提供了理论支撑。
Abstract:This is an essay in the field of process mineralogy. A titanium magnetite ore in Yunnan not only has high iron and titanium, but also is associated with scandium. In order to realize the comprehensive utilization of the ore, the process mineralogy of the ore was studied. The chemical composition of the ore was identified by means of X-ray fluorescence spectroscopy and chemical analysis; The technological characteristics of the minerals were studied by means of X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis (SEM-EDS), electron probe microanalysis (EPMA), and the occurrence state of scandium was emphatically investigated. The results show that the main carrier minerals of iron in ore are titanomagnetite and amphibole, followed by ilmenite; The carrier mineral of titanium is mainly ilmenite, with a small amount occurring in sphene; Scandium is mainly distributed in amphibole. The results of elemental distribution show that the theoretical grades of iron, titanium and scandium are 71.02%, 47.40% and 96.63 g/t respectively, and the theoretical recoveries are 40.52%, 66.48% and 97% respectively. The mineralogical factors affecting the recovery index of mineral processing are analyzed, which provides a theoretical support for the subsequent beneficiation and smelting process.
-
Key words:
- Process mineralogy /
- Titanomagnetite /
- Occurrence status /
- Scandium /
- Comprehensive utilization
-
表 1 矿石化学多项分析结果/%
Table 1. Chemical composition of the ore
TFe TiO2 V2O5 SiO2 Al2O3 CaO MgO S P Cu Co Ni Sc2O3* Cr2O3 FeO 烧损 20.02 6.92 0.14 34.50 7.77 9.24 7.68 0.30 0.10 0.025 0.012 0.011 65.8 0.016 13.82 0.53 *单位为:g/t。 表 2 铁物相分析结果
Table 2. Chemical phases of iron
名称 钛磁铁矿中铁 钛铁矿中铁 菱铁矿中铁 赤、褐铁矿中铁 硫化物中铁 硅酸盐中铁 总铁 含量/% 8.23 2.63 0.20 0.58 1.20 7.12 19.96 占有率/% 41.23 13.18 1.00 2.91 6.01 35.67 100.00 表 3 钛物相分析结果
Table 3. Chemical phases of titanium
名称 钛铁矿中TiO2 钛磁铁矿中TiO2 其他TiO2 总TiO2 含量/% 4.46 0.49 1.97 6.92 占有率/% 64.45 7.08 28.47 100.00 表 4 矿石的矿物组成及相对含量
Table 4. Mineral composition and its relative content in the ore
矿物名称 含量/% 矿物名称 含量/% 磁铁矿 11.35 榍石 3.42 钛铁矿 9.79 长石 2.24 角闪石类 66.37 黑云母 2.09 绿帘石、绿泥石 2.61 硫化物 0.48 其他 1.65 表 5 钛磁铁矿电子探针分析结果/%
Table 5. Results of electron microprobe analysis of titanomagnetite
点 MgO TiO2 FeO MnO CoO Sc2O3 1 0.021 0.354 92.796 0.01 0.135 0.012 2 0.027 0.355 92.451 0.026 0.092 / 3 0.041 0.113 92.756 0.037 0.152 0.003 4 0.051 0.105 92.25 0.015 0.084 / 5 0.041 0.112 92.606 0.035 0.109 0.005 6 0.043 0.211 92.623 0.032 0.141 / 7 0.019 0.174 92.019 0.018 0.092 0.003 8 0.026 0.129 92.561 0.034 0.195 / 平均 0.034 0.194 92.500 0.026 0.125 0.003 表 6 钛磁铁矿粒度统计结果
Table 6. Grain size of magnetite
粒级/mm +0.5 -0.5+0.10 -0.10+0.074 -0.074+0.04 -0.04+0.02 -0.02 含量/% 6.79 61.62 10.22 10.47 7.35 3.55 累计/% 6.79 68.41 78.63 89.10 96.45 100.00 表 7 钛铁矿电子探针分析结果/%
Table 7. Results of electron microprobe analysis of ilmenite
点 MgO TiO2 FeO MnO CoO Sc2O3 1 0.047 51.447 47.384 1.531 0.01 / 2 0.050 50.089 47.255 1.507 0.069 0.001 3 0.027 49.992 48.059 1.562 0.064 / 4 0.046 49.526 47.543 1.484 0.006 0.029 5 0.033 49.008 48.344 1.408 0.072 0.006 6 0.036 49.80 48.194 1.515 0.073 0.018 7 0.031 49.32 48.345 1.508 0.055 0.033 8 0.065 50.824 47.63 1.376 0.063 / 平均 0.042 50.001 47.840 1.486 0.052 0.011 表 8 钛铁矿粒度统计结果
Table 8. Grain size of ilmenite
粒级/mm +0.5 -0.5+0.10 -0.10+0.074 -0.074+0.04 -0.04+0.02 -0.02 含量/% 18.57 47.02 7.57 11.22 10.92 4.70 累计/% 18.57 65.59 73.16 84.38 95.30 100.00 表 9 角闪石电子探针分析结果/%
Table 9. Results of electron microprobe analysis of hornblende
点 Na2O K2O TiO2 MgO CaO MnO Al2O3 SiO2 FeO Total 1 1.229 0.257 0.587 12.088 11.956 0.242 9.296 44.561 14.918 95.133 2 1.277 0.224 0.574 12.522 11.926 0.201 8.981 44.934 14.695 95.334 3 1.478 0.306 0.587 12.258 11.28 0.271 9.688 44.149 15.249 95.265 平均 1.328 0.262 0.583 12.289 11.721 0.238 9.321 44.548 14.954 95.244 表 10 矿石中铁、钛的平衡配分
Table 10. Equilibrium distribution of iron, titanium and scandium in ore
矿物名称 矿物量/% 含量/% 配分量/% 分配率/% TFe TiO2 TFe TiO2 TFe TiO2 钛磁铁矿 11.35 71.02 0.50 8.06 0.06 40.52 0.86 钛铁矿 9.79 36.52 47.40 3.58 4.64 18.00 66.48 角闪石类 66.37 11.62 1.02 7.71 0.68 38.76 9.74 榍石 3.42 / 40.80 / 1.40 / 20.06 黑云母 2.09 14.70 2.78 0.31 0.06 1.56 0.86 其它 6.98 3.23 1.98 0.23 0.14 1.16 2.00 合计 100.00 19.89 6.98 100.00 100.00 -
[1] 刘飞燕, 杨磊, 陈家彪, 等. 某铁矿床中铁钴矿物的工艺矿物学研究[J]. 现代矿业, 2011, 27(12):119-120. LIU F Y, YANG L, CHEN J B, et al. Study on process mineralogy of iron and cobalt minerals in an iron ore deposit[J]. Modern Mining, 2011, 27(12):119-120.
LIU F Y, Yang L, CHEN J B, et al. Study on process mineralogy of iron and cobalt minerals in an iron ore deposit[J]. Modern Mining, 2011, 27(12): 119-120.
[2] 刘飞燕. 云南金平县钒钛磁铁钪矿工艺矿物学研究报告[R]. 中国地质科学院矿产综合利用研究所, 2016.
LIU F Y. process mineralogy study report on vanadium-titanium-scandium magnetic iron ore in Jinping County, Yunnan[R]. Institute of Multipurpose Utilization of Mineral Resources, CAGS, 2016.
[3] 程仁举, 刘飞燕, 李成秀, 等. 甘肃某含钪钛铁矿工艺矿物学研究[J]. 有色金属(选矿部分), 2019(4): 1-5.
CHENG R J, LIU F Y, LI C X, et al. Research on process mineralogy of a scandium-bearing ilmenite in Gansu Province[J]. Nonferrous Metals(Mineral Processing Section), 2019(4): 1-5.
[4] 常丽华, 陈曼云, 等. 透明矿物薄片鉴定手册[M]. 北京: 地质出版社, 2006.
CHANG L H, CHEN M Y, et al. Handbook of thin slice identification of transparent minerals [M]. Beijing: Geological Publishing House, 2006.
[5] 刘应冬, 徐力, 王先达, 等. 攀枝花钒钛磁铁矿尾矿中主要金属元素淋滤浸出行为研究[J]. 矿产综合利用, 2020(6):84-90. LIU Y D, XU L, WANG X D, et al. Study on leaching behavior of main metal elements from panzhihua vanadium-titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(6):84-90.
LIU Y D, XU L, WANG X D, et al. Study on leaching behavior of main metal elements from panzhihua vanadium-titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 84-90.
[6] 洪秋阳, 李美荣, 李波, 国外某难选冶钒钛铁矿石工艺矿物学特征 [J]. 矿产综合利用, 2020(6): 48-55.
HONG Q Y, LI M R, LI B, et al. Process mineralogical characteristics of a foreign refractory vanadium-titanium iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 48-55.
[7] 陈福林, 杨晓军, 杨道广, 等. 肃某低品位钒钛磁铁矿工艺矿物学研究[J]. 矿产综合利用, 2020(6):64-68. CHEN F L, YANG X J, YANG D G, et al. Research on process mineralogy for a low grade vanadium titano-magnetite in Gansu province[J]. Multipurpose Utilization of Mineral Resources, 2020(6):64-68. doi: 10.3969/j.issn.1000-6532.2020.06.011
CHEN F L, YANG X J, YANG D G, et al. Research on process mineralogy for a low grade vanadium titano-magnetite in Gansu province[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 64-68. doi: 10.3969/j.issn.1000-6532.2020.06.011
[8] 陆显志, 路沛瑶, 陈英杰, 等. 云南某钛铁矿的工艺矿物学研究[J]. 矿产综合利用, 2022(2):206-210. LU X Z, LU P Y, CHEN Y J, et al. Study on process mineralogy of ilmenite in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2022(2):206-210.
LU X Z, LU P Y, CHEN Y J, et al. Study on process mineralogy of ilmenite in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2022 (2): 206-210.
[9] Yun Neradovsky, 等, 钛铁矿形态类型对Gusevogorskoe矿床可加工性的影响[C]. IOP系列会议: 地球与环境科学, 2019(1): 012050.
Yun Neradovsky, et al. Influence of morphological types of ilmenite on processability of titanomagnetite ore of Gusevogorskoe deposit[C]. IOP Conference Series: Earth and Environmental Science, 2019(1): 012050.
[10] 李城, 王伟之. 钒钛磁铁矿中钛的柱机联合全浮工艺试验研究[J]. 矿产综合利用, 2019(3):40-43. LI C, WANG W Z. Experimental research on column-cell integration full flotation technology of titanium in vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3):40-43. doi: 10.3969/j.issn.1000-6532.2019.03.009
LI C, WANG W Z. Experimental research on column-cell integration full flotation technology of titanium in vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3): 40-43. doi: 10.3969/j.issn.1000-6532.2019.03.009