硫化铅锌矿浮选药剂研究进展

李潇煜, 姜丽帅, 韩百岁, 杨孟月, 冷红光. 硫化铅锌矿浮选药剂研究进展[J]. 矿产综合利用, 2023, 44(6): 63-70. doi: 10.3969/j.issn.1000-6532.2023.06.010
引用本文: 李潇煜, 姜丽帅, 韩百岁, 杨孟月, 冷红光. 硫化铅锌矿浮选药剂研究进展[J]. 矿产综合利用, 2023, 44(6): 63-70. doi: 10.3969/j.issn.1000-6532.2023.06.010
Li Xiaoyu, Jiang Lishuai, Han Baisui, Yang Mengyue, Leng Hongguang. Research Progress on Flotation Reagents of Lead-zinc Sulfide Ore[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 63-70. doi: 10.3969/j.issn.1000-6532.2023.06.010
Citation: Li Xiaoyu, Jiang Lishuai, Han Baisui, Yang Mengyue, Leng Hongguang. Research Progress on Flotation Reagents of Lead-zinc Sulfide Ore[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 63-70. doi: 10.3969/j.issn.1000-6532.2023.06.010

硫化铅锌矿浮选药剂研究进展

  • 基金项目: 2021年度优秀青年人才项目(2021YQ05)
详细信息
    作者简介: 李潇煜(1998-),女,硕士研究生,研究方向为矿物加工工程
    通讯作者: 韩百岁(1987-),男,副教授,硕士生导师,主要研究方向为硫化矿浮选
  • 中图分类号: TD952

Research Progress on Flotation Reagents of Lead-zinc Sulfide Ore

More Information
  • 这是一篇矿物加工工程领域的论文。铅锌矿是我国的重要战略矿产资源之一,总体呈贫、细、杂的特点,其中硫化铅锌矿约占铅锌矿总储量的90%。目前,浮选是硫化铅锌矿选矿最常用的方法,而浮选药剂的选择对浮选工艺指标起决定性作用。本文对近些年硫化铅锌矿的浮选药剂的研究进展进行总结,着重介绍了捕收剂、抑制剂及活化剂,分析了未来硫化铅锌矿浮选的重点研究方向,最后指出了微生物作为浮选药剂在未来硫化铅锌矿浮选中的广阔应用前景,旨在为实现高效硫化铅锌分离提供技术及理论支撑。

  • 加载中
  • 表 1  硫化铅锌矿常用浮选工艺特点

    Table 1.  Characteristics of flotation process of lead-zinc sulfide ore

    浮选工艺工艺流程矿石适用类型优点
    优先浮选 根据可浮性差异进行铅锌分离,先抑锌浮铅,再活化锌,最终得到铅、锌精矿。 可浮性差异大、脉石含量较少,有用矿物呈粗粒嵌布。 流程简单、所得精矿质量高、指标稳定等。
    混合浮选 先混合浮选出铅锌精矿,再进行铅锌分离。 可浮性差异小、脉石含量较多,有用矿物呈集合体嵌布。 减少后续研磨成本、减少药剂用量等。
    等可浮浮选 将可浮性相近的硫化铅锌一起选别出来,再进行铅锌分离。 适用于包含易浮选和难浮选两部分的铅锌矿物。 药剂用量少、节约能耗,减少药剂后续的不良影响等。
    电位调控浮选 通过改变浮选体系的电化学条件来控制矿物表面性质,实现铅锌选择性分离。 复杂多金属低品位硫化铅锌矿 药剂用量少,环境污染小,选择性高等。
    下载: 导出CSV
  • [1]

    杨晓坤. 我国再生铅产业发展现状与发展思路讨论[J]. 电池工业, 2022, 26(2):81-84,100. YANG X K. Development status and development ideas of recycled lead industry in China[J]. Battery Industry, 2022, 26(2):81-84,100.

    YANG X K. Development status and development ideas of recycled lead industry in China [J]. Battery Industry, 2022, 26(2): 81-84, 100.

    [2]

    李文昌, 彭宇伟, 王地, 等. 浅析中国再生锌现状及发展前景[J]. 资源再生, 2020(3):40-41. LI W C, PENG Y W, WANG D, et al. Current situation and development prospect of reclaimed zinc in China[J]. Resources Regeneration, 2020(3):40-41. doi: 10.3969/j.issn.1673-7776.2020.03.015

    LI W C, PENG Y W, WANG D, et al. Current situation and development prospect of reclaimed zinc in China [J]. Resources Regeneration, 2020 (3): 40-41. doi: 10.3969/j.issn.1673-7776.2020.03.015

    [3]

    Nayak A, Jena M S, Mandre N R. Beneficiation of lead-zinc ores – a review[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(5).

    [4]

    文金磊, 朱一民, 周菁, 等. 铅锌矿产资源特征及浮选工艺研究现状[J]. 矿产综合利用, 2015(6):1-6. WEN J L, ZHU Y M, ZHOU J, et al. Characteristics of lead-zinc mineral resources and research status of flotation process[J]. Multipurpose Utilization of Mineral Resources, 2015(6):1-6. doi: 10.3969/j.issn.1000-6532.2015.06.001

    WEN J L, ZHU Y M, ZHOU J, et al. Characteristics of lead-zinc mineral resources and research status of flotation process [J]. Multipurpose Utilization of Mineral Resources, 2015 (6): 1-6. doi: 10.3969/j.issn.1000-6532.2015.06.001

    [5]

    杜五星, 戴惠新, 何东祥, 等. 氧化铅锌矿的选矿研究现状及进展[J]. 矿产综合利用, 2016(4):11-15. DU W X, DAI H X, HE D X, et al. Mineral processing research status and progress of lead-zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2016(4):11-15. doi: 10.3969/j.issn.1000-6532.2016.04.003

    DU W X, DAI H X, HE D X, et al. Mineral processing research status and progress of lead-zinc oxide ore [J]. Multipurpose Utilization of Mineral Resources, 2016 (4): 11-15. doi: 10.3969/j.issn.1000-6532.2016.04.003

    [6]

    张松, 王宇, 陈婷. 铅锌矿伴生金、银、铟、锗和镓综合回收利用综述[J]. 贵金属, 2019, 40(S1):111-114. ZHANG S, WANG Y, CHEN T. Comprehensive recovery and utilization of associated gold, silver, indium, Germanium and gallium in lead-zinc ore[J]. Precious Metals, 2019, 40(S1):111-114. doi: 10.3969/j.issn.1004-0676.2019.z1.022

    ZHANG S, WANG Y, CHEN T. Comprehensive recovery and utilization of associated gold, silver, indium, Germanium and gallium in lead-zinc ore [J]. Precious Metals, 2019, 40(S1): 111-114. doi: 10.3969/j.issn.1004-0676.2019.z1.022

    [7]

    邹光旭, 吴雪兰, 郭争争, 等. 铅锌矿铅锌浮选的研究进展[J]. 安徽化工, 2017, 43(3):13-18. ZOU G X, WU X L, GUO Z Z, et al. Research progress of lead-zinc flotation in lead-zinc ore[J]. Anhui Chemical Industry, 2017, 43(3):13-18. doi: 10.3969/j.issn.1008-553X.2017.03.004

    ZOU G X, WU X L, GUO Z Z, et al. Research progress of lead-zinc flotation in lead-zinc ore [J]. Anhui Chemical Industry, 2017, 43(3): 13-18. doi: 10.3969/j.issn.1008-553X.2017.03.004

    [8]

    周跃, 周李蕾, 周贺鹏, 等. 铁闪锌矿选矿技术的现状与进展[J]. 四川有色金属, 2008(4):57,4-7,4. ZHOU Y, ZHOU L L, ZHOU H P, et al. Current status and progress of ore dressing technology for marmatite[J]. Sichuan Nonferrous Metals, 2008(4):57,4-7,4. doi: 10.3969/j.issn.1006-4079.2008.04.002

    ZHOU Y, ZHOU L L, ZHOU H P, et al. Current status and progress of ore dressing technology for marmatite [J]. Sichuan Nonferrous Metals, 2008 (4): 57, 4. doi: 10.3969/j.issn.1006-4079.2008.04.002

    [9]

    杨进忠, 陈晓青, 毛益林, 等. 复杂难选硫化-氧化混合铅锌矿选矿分离技术[J]. 矿产综合利用, 2012(5):11-14. YANG J Z, CHEN X Q, MAO Y L, et al. Beneficiation and separation technology of complex refractory sulfide and oxidation mixed lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2012(5):11-14. doi: 10.3969/j.issn.1000-6532.2012.05.003

    YANG J Z, CHEN X Q, MAO Y L, et al. Beneficiation and separation technology of complex refractory sulfide and oxidation mixed lead-zinc ore [J]. Multipurpose Utilization of Mineral Resources, 2012 (5): 11-14. doi: 10.3969/j.issn.1000-6532.2012.05.003

    [10]

    张磊, 戴惠新, 杜五星. 铜锌硫化矿分离工艺现状[J]. 矿产综合利用, 2019(1):1-5. ZHANG L, DAI H X, DU W X. Current status of separation process of Cu-Zn sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2019(1):1-5. doi: 10.3969/j.issn.1000-6532.2019.01.001

    ZHANG L, DAI H X, DU W X. Current status of separation process of Cu-Zn sulfide ore [J]. Multipurpose Utilization of Mineral Resources, 2019 (1): 1-5. doi: 10.3969/j.issn.1000-6532.2019.01.001

    [11]

    孙若凡, 刘丹, 杜钰, 等. 黄铜矿、方铅矿分离研究现状及进展[J]. 矿产综合利用, 2021(4):80-86,35. SUN R F, LIU D, DU Y, et al. Research status and progress of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86,35. doi: 10.3969/j.issn.1000-6532.2021.04.012

    SUN R F, LIU D, DU Y, et al. Research status and progress of separation of chalcopyrite and galena [J]. Multipurpose Utilization of Mineral Resources, 2021 (4): 80-86, 35. doi: 10.3969/j.issn.1000-6532.2021.04.012

    [12]

    曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12):1589-1594. CAO F, SUN C Y, WANG H J, et al. Effect of hydrocarbon-based structure on flotation performance of xanthate collector[J]. Journal of University of Science and Technology Beijing, 2014, 36(12):1589-1594. doi: 10.13374/j.issn1001-053x.2014.12.004

    CAO F, SUN C Y, WANG H J, et al. Effect of hydrocarbon-based structure on flotation performance of xanthate collector [J]. Journal of University of Science and Technology Beijing, 2014, 36(12): 1589-1594. doi: 10.13374/j.issn1001-053x.2014.12.004

    [13]

    左小华, 谭元敏, 苏振宏, 等. 硫化铜矿石浮选捕收剂的最新研究进展[J]. 应用化工, 2015, 44(9):1733-1736. ZUO X H, TAN Y M, SU Z H, et al. Latest research progress of flotation collector for copper sulfide ore[J]. Applied Chemical Industry, 2015, 44(9):1733-1736. doi: 10.16581/j.cnki.issn1671-3206.2015.09.041

    ZUO X H, TAN Y M, SU Z H, et al. Latest research progress of flotation collector for copper sulfide ore [J]. Applied Chemical Industry, 2015, 44(9): 1733-1736. doi: 10.16581/j.cnki.issn1671-3206.2015.09.041

    [14]

    苏建芳, 肖巧斌, 王中明, 等. 亚硫酸钠在乙硫氮-方铅矿浮选体系中的作用及机理研究[J]. 矿产综合利用, 2020(3):203-208. SU J F, XIAO Q B, WANG Z M, et al. Study on the effect and mechanism of sodium sulfite on the flotation system of ethiothionium-galena[J]. Multipurpose Utilization of Mineral Resources, 2020(3):203-208. doi: 10.3969/j.issn.1000-6532.2020.03.035

    SU J F, XIAO Q B, WANG Z M, et al. Study on the effect and mechanism of sodium sulfite on the flotation system of ethiothionium-galena [J]. Multipurpose Utilization of Mineral Resources, 2020 (3): 203-208. doi: 10.3969/j.issn.1000-6532.2020.03.035

    [15]

    ZHANG W J, FENG Z T, SUN W, et al. Synthesis of a novel collector based on selective nitrogen coordination for improved separation of galena and sphalerite against pyrite[J]. Chemical Engineering Science, 2020, 226.

    [16]

    LIU S, DONG Y, XIE L, et al. Uncovering the hydrophobic mechanism of a novel dithiocarbamate-hydroxamate surfactant towards galena[J]. Chemical Engineering Science, 2021, 245.

    [17]

    ZOU S, LIN Q Y, WANG S, et al. A novel surfactant o, o'-bis(2-butoxyethyl) ammonium dithiophosphate: synthesis, selective flotation and adsorption mechanism towards galena[J]. Minerals Engineering, 2022, 179.

    [18]

    JIA Y, ZHANG Y, HUANG Y G, et al. Synthesis of trimethylacetyl thiobenzamide and its flotation separation performance of galena from sphalerite[J]. Applied Surface Science, 2021, 569.

    [19]

    WANG J G, JI Y H, CHENG S Y, et al. Selective flotation separation of galena from sphalerite via chelation collectors with different nitrogen functional groups[J]. Applied Surface Science, 2021, 568.

    [20]

    ZHANG Z Y, SUN Q C, LIU S, et al. The selective flotation separation of galena from sphalerite with a novel collector of 5-amyl-1, 2, 4-triazole-3-thione[J]. Journal of Molecular Liquids, 2021, 332.

    [21]

    Mundlapati V R, Ghosh S, Bhattacherjee A, et al. Critical assessment of the strength of hydrogen bonds between the sulfur atom of methionine/cysteine and backbone amides in proteins. [J]. The Journal of Physical Chemistry Letters, 2015, 6(8).

    [22]

    王晓慧, 梁友伟, 惠博, 等. 贵州丹寨铅锌多金属硫化矿资源的高效回收试验[J]. 金属矿山, 2021(2):85-89. WANG X H, LIANG Y W, HUI B, et al. High efficiency recovery test of lead-zinc polymetallic sulfide ore resources in Danzhai, Guizhou[J]. Metal Mine, 2021(2):85-89.

    WANG X H, LIANG Y W, HUI B, et al. High efficiency recovery test of lead-zinc polymetallic sulfide ore resources in Danzhai, Guizhou [J]. Metal Mine, 2021 (2): 85-89.

    [23]

    王强. 新疆某伴生银硫化铅矿石选矿试验研究[J]. 有色金属(选矿部分), 2020(1):38-41. WANG Q. Experimental study on beneficiation of an associated silver lead sulfide ore in Xinjiang[J]. Non-ferrous Metals (Mining Processing Secition), 2020(1):38-41.

    WANG Q. Experimental study on beneficiation of an associated silver lead sulfide ore in Xinjiang [J]. Non-ferrous Metals (Mining Processing Secition), 2020 (1): 38-41.

    [24]

    肖骏, 黄圣淇, 董艳红, 等. 组合捕收剂提高硫氧混合型铅锌矿浮选回收率试验研究[J]. 湖南有色金属, 2017, 33(5):13-17. XIAO J, HUANG S Q, DONG Y H, et al. Experimental study on improving flotation recovery of sulfur-oxygen mixed lead-zinc ore by combined collector[J]. Hunan Nonferrous Metals, 2017, 33(5):13-17. doi: 10.3969/j.issn.1003-5540.2017.05.004

    XIAO J, HUANG S Q, DONG Y H, et al. Experimental study on improving flotation recovery of sulfur-oxygen mixed lead-zinc ore by combined collector [J]. Hunan Nonferrous Metals, 2017, 33(5): 13-17. doi: 10.3969/j.issn.1003-5540.2017.05.004

    [25]

    薛晨, 魏志聪. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿产综合利用, 2017(3):38-43. XUE C, WEI Z C. Mechanism and research progress of sphalerite inhibitor[J]. Multipurpose Utilization of Mineral Resources, 2017(3):38-43. doi: 10.3969/j.issn.1000-6532.2017.03.006

    XUE C, WEI Z C. Mechanism and research progress of sphalerite inhibitor [J]. Multipurpose Utilization of Mineral Resources, 2017 (3): 38-43. doi: 10.3969/j.issn.1000-6532.2017.03.006

    [26]

    周菁. 难选铅锌硫矿无毒高效选矿药剂试验研究[J]. 有色金属(选矿部分), 2010(4):4348-48. ZHOU J. Experimental study on non-toxic and efficient beneficiation reagent for refractory lead-zinc-sulfur ore[J]. Non-ferrous Metals (Mining Processing Secition), 2010(4):4348-48.

    ZHOU J. Experimental study on non-toxic and efficient beneficiation reagent for refractory lead-zinc-sulfur ore [J]. Non-ferrous Metals (Mining Processing Secition), 2010 (4): 4348.

    [27]

    陈军, 刘苗华, 肖金雄, 等. 福建某高硫、低品位复杂多金属矿选矿试验研究[J]. 矿冶工程, 2012, 32(2):34-38,41. CHEN J, LIU M H, XIAO J X, et al. Experimental study on beneficiation of a complex polymetallic ore with high sulfur and low grade in Fujian Province[J]. Mining and Metallurgy Engineering, 2012, 32(2):34-38,41. doi: 10.3969/j.issn.0253-6099.2012.02.009

    CHEN J, LIU M H, XIAO J X, et al. Experimental study on beneficiation of a complex polymetallic ore with high sulfur and low grade in Fujian Province [J]. Mining and Metallurgy Engineering, 2012, 32(2): 34-38, 41. doi: 10.3969/j.issn.0253-6099.2012.02.009

    [28]

    达娃卓玛, 刘潘, 李国栋, 等. 西藏某混合铅锌矿优先浮选实验研究[J]. 矿产综合利用, 2021(3):82-87. DA W Z M, LIU P, LI G D, et al. Experimental study on preferential flotation of a mixed lead-zinc ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2021(3):82-87.

    DA W Z M, LIU P, LI G D, et al. Experimental study on preferential flotation of a mixed lead-zinc ore in Xizang [J]. Multipurpose Utilization of Mineral Resources, 2021 (3): 82-87.

    [29]

    温凯, 陈建华. 某含银复杂铜铅锌多金属硫化矿浮选试验[J]. 矿产综合利用, 2019(6):28-32. WEN K, CHEN J H. Flotation experiment of a complex copper-lead-zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32. doi: 10.3969/j.issn.1000-6532.2019.06.006

    WEN K, CHEN J H. Flotation experiment of a complex copper-lead-zinc polymetallic sulfide ore containing silver [J]. Multipurpose Utilization of Mineral Resources, 2019 (6): 28-32. doi: 10.3969/j.issn.1000-6532.2019.06.006

    [30]

    王群, 吴亨魁, 胡熙庚. 亚硫酸盐对铜活化的闪锌矿及铁闪锌矿抑制作用的研究[J]. 中南矿冶学院学报, 1985(3):126-134. WANG Q, WU H K, HU X G. Study on inhibition of copper activated sphalerite and iron sprite by sulfite[J]. Journal of Central South University of Mining and Metallurgy, 1985(3):126-134.

    WANG Q, WU H K, HU X G. Study on inhibition of copper activated sphalerite and iron sprite by sulfite [J]. Journal of Central South University of Mining and Metallurgy, 1985 (3): 126-134.

    [31]

    周德炎. 单宁类有机抑制剂对长坡选矿厂全浮硫化矿铅锌分离试验研究[J]. 大众科技, 2012(1):111-113. ZHOU D Y. Study on separation of lead and zinc from floating sulfide Ore in Changpo Concentrator by tannin organic inhibitors[J]. Popular Science and Technology, 2012(1):111-113. doi: 10.3969/j.issn.1008-1151.2012.01.046

    ZHOU D Y. Study on separation of lead and zinc from floating sulfide Ore in Changpo Concentrator by tannin organic inhibitors [J]. Popular Science and Technology, 2012 (1): 111-113. doi: 10.3969/j.issn.1008-1151.2012.01.046

    [32]

    龙秋容, 陈建华, 李玉琼, 等. 铅锌浮选分离有机抑制剂的研究[J]. 金属矿山, 2009(3):5458,115-58,115. LONG Q R, CHEN J H, LI Y Q, et al. Study on organic inhibitor of lead-zinc flotation separation[J]. Metal Mine, 2009(3):5458,115-58,115. doi: 10.3321/j.issn:1001-1250.2009.03.014

    LONG Q R, CHEN J H, LI Y Q, et al. Study on organic inhibitor of lead-zinc flotation separation [J]. Metal Mine, 2009 (3): 5458, 115. doi: 10.3321/j.issn:1001-1250.2009.03.014

    [33]

    陈建华, 梁梅莲, 蓝丽红. 偶氮类有机抑制剂对硫化矿的抑制性能[J]. 中国有色金属学报, 2010, 20(11):2239-2247. CHEN J H, LIANG M L, LAN L H. Inhibition of sulfide ore by azo organic inhibitors[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(11):2239-2247. doi: 10.19476/j.ysxb.1004.0609.2010.11.028

    CHEN J H, LIANG M L, LAN L H. Inhibition of sulfide ore by azo organic inhibitors [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(11): 2239-2247. doi: 10.19476/j.ysxb.1004.0609.2010.11.028

    [34]

    刘润清, 孙伟, 胡岳华, 等. 巯基类小分子有机抑制剂对复杂硫化矿物浮选行为的抑制机理[J]. 中国有色金属学报, 2006 (4): 746-751.

    LIU R Q, SUN W, HU Y H, et al. Mechanism of sulfhydryl small molecule organic inhibitors on flotation behavior of complex sulfide minerals [J]. Chinese Journal of Nonferrous

    [35]

    阙绍娟, 蔡振波, 林榜立. 新型无毒有机抑制剂在广西某多金属硫化矿浮选中的实验研究[J]. 矿业研究与开发, 2017, 37(10):72-75. QUE S J, CAI Z B, LIN B L. Experimental study on new non-toxic organic inhibitor in flotation of a polymetallic sulfide ore in Guangxi[J]. Mining Research and Development, 2017, 37(10):72-75.

    QUE S J, CAI Z B, LIN B L. Experimental study on new non-toxic organic inhibitor in flotation of a polymetallic sulfide ore in Guangxi [J]. Mining Research and Development, 2017, 37(10): 72-75.

    [36]

    崔艳芳, 焦芬, 覃文庆, 等. 硫酸锌和二甲基二硫代氨基甲酸钠在铅锌浮选体系中对闪锌矿的协同抑制机理(英文)[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9):2547-2555. CUI Y F, JIAO F, QIN W Q, et al. Synergic inhibition mechanism of zinc sulfate and sodium dimethyl dithiocyanate on flasticite in lead-zinc flotation System[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9):2547-2555. doi: 10.1016/S1003-6326(20)65400-0

    CUI Y F, JIAO F, QIN W Q, et al. Synergic inhibition mechanism of zinc sulfate and sodium dimethyl dithiocyanate on flasticite in lead-zinc flotation System [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2547-2555. doi: 10.1016/S1003-6326(20)65400-0

    [37]

    ZHU H Y, YANG B Q, FENG J C, et al. Evaluation of 1-hydroxyethylidene-1, 1-diphosphonic acid as an efficient and low-toxic sphalerite depressant in the selective flotation of galena from sphalerite[J]. Journal of Cleaner Production, 2021, 329.

    [38]

    邱廷省, 李国栋, 李晓波, 等. 高浓度锌离子对酸性体系中闪锌矿可浮性的影响(英文)[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7):2128-2138. QIU T S, LI G D, LI X B, et al. Effect of high concentration zinc ions on floatability of sphalerite in acidic system[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7):2128-2138. doi: 10.1016/S1003-6326(21)65643-1

    QIU T S, LI G D, LI X B, et al. Effect of high concentration zinc ions on floatability of sphalerite in acidic system [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7): 2128-2138. doi: 10.1016/S1003-6326(21)65643-1

    [39]

    陈建华, 童雄, 甘恒, 等. 多金属硫化矿混合浮选高效活化剂实验研究[J]. 有色金属(选矿部分), 2018(3):97-100. CHEN J H, TONG X, GAN H, et al. Experimental study on high efficiency activator for mixed flotation of polymetallic sulfide ore[J]. Non-ferrous Metals (Mining Processing Secition), 2018(3):97-100.

    CHEN J H, TONG X, GAN H, et al. Experimental study on high efficiency activator for mixed flotation of polymetallic sulfide ore [J]. Non-ferrous Metals (Mining Processing Secition), 2018 (3): 97-100.

    [40]

    毛宇宇, 窦培谦, 张瑞洋, 等. 微生物在矿物浮选中的应用及作用机理研究进展[J]. 金属矿山, 2020(5):171-177. MAO Y Y, DOU P Q, ZHANG R Y, et al. Research progress of microbial application and action mechanism in mineral flotation[J]. Metal Mine, 2020(5):171-177. doi: 10.19614/j.cnki.jsks.202005025

    MAO Y Y, DOU P Q, ZHANG R Y, et al. Research progress of microbial application and action mechanism in mineral flotation [J]. Metal Mine, 2020 (5): 171-177. doi: 10.19614/j.cnki.jsks.202005025

    [41]

    Vasanthakumar B, Ravishankar H, Subramanian S. Microbially induced selective flotation of sphalerite from galena using mineral-adapted strains of bacillus megaterium[J]. Colloids and Surfaces B: Biointerfaces, 2013, 112.

    [42]

    Santhiya D, Subramanian S, Natarajan K, et al. Bio-modulation of galena and sphalerite surfaces using thiobacillus thiooxidans[J]. International Journal of Mineral Processing, 2001, 62(1).

    [43]

    Kinnunen P, Miettinen H, Bomberg M. Review of potential microbial effects on flotation[J]. Minerals, 2020, 10(6).

  • 加载中

(1)

计量
  • 文章访问数:  573
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2022-08-16
刊出日期:  2023-12-25

目录