增材制造月壤原位成形技术的研究现状

吴灵芝, 尹海清, 张聪, 张瑞杰, 王永伟, 姜雪, 曲选辉. 增材制造月壤原位成形技术的研究现状[J]. 矿产综合利用, 2023, 44(6): 99-107. doi: 10.3969/j.issn.1000-6532.2023.06.015
引用本文: 吴灵芝, 尹海清, 张聪, 张瑞杰, 王永伟, 姜雪, 曲选辉. 增材制造月壤原位成形技术的研究现状[J]. 矿产综合利用, 2023, 44(6): 99-107. doi: 10.3969/j.issn.1000-6532.2023.06.015
Wu Lingzhi, Yin Haiqing, Zhang Cong, Zhang Ruijie, Wang Yongwei, Jiang Xue, Qu Xuanhui. Research Status of Additive Manufacturing Lunar in-situ Forming Technology[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 99-107. doi: 10.3969/j.issn.1000-6532.2023.06.015
Citation: Wu Lingzhi, Yin Haiqing, Zhang Cong, Zhang Ruijie, Wang Yongwei, Jiang Xue, Qu Xuanhui. Research Status of Additive Manufacturing Lunar in-situ Forming Technology[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 99-107. doi: 10.3969/j.issn.1000-6532.2023.06.015

增材制造月壤原位成形技术的研究现状

  • 基金项目: 北京市自然科学基金(2212042);国家自然科学基金叶企孙基金项目(U2141205)
详细信息
    作者简介: 吴灵芝(1997-),女,博士,从事增材制造领域相关研究
    通讯作者: 尹海清(1978-),女,博士生导师,研究方向为材料设计与优化、材料数据库等研究
  • 中图分类号: TD989; P583

Research Status of Additive Manufacturing Lunar in-situ Forming Technology

More Information
  • 这是一篇陶瓷及复合材料领域的论文。几十年来,太空探索一直是炙手可热的话题,随着嫦娥五号的发射,正式开启了我国首次地外天体采样返回之旅,象征着我国月球基地建设方案正式提上日程。月球探索是人类进行深空探索的第一步,月球原位资源利用对于月球探索具有重大意义。增材制造是进行月球原位资源利用建设月球基地的有效手段。本文阐述了月壤的基本特性以及模拟月壤的特点及组成,重点总结了目前国内外模拟月壤增材制造的研究进展。提出了面向月球风化层(即月壤)的增材制造关键技术的重要挑战。围绕我国月球基地建设工程,讨论了增材制造技术的发展前景与可能的实施途径。

  • 加载中
  • 图 1  月壤的太空风化作用及对内部物质示意[12, 16]

    Figure 1. 

    表 1  月壤的颗粒形态

    Table 1.  Particle morphology of lunar soil

    参数平均比值描述
    延性1.35稍长条状
    长度直径比0.55稍长条状至中等长条状
    圆度轮廓0.21次棱角状
    平行光0.22棱角状
    体积系数0.3长条状
    比表面积/(m2/g)0.5不规则、凹角状
    下载: 导出CSV

    表 2  月壤及模拟月壤化学组成/%[17-18]

    Table 2.  Chemical composition of lunar soil and simulated lunar soil[17-18]

    成分Apollo11Apollo14JSC-1MLS-1CAS-1NEU-1南京月壤CUG-/A LRSCLRS-2
    SiO242.248.147.7143.8649.2444.9248.0547.5441.89
    TiO27.81.71.596.321.912.871.181.747.62
    Al2O313.617.415.0213.6815.817.2317.0814.0113.41
    FeO15.310.47.3513.411.4713.0913.8410.2815.90
    Fe2O33.442.6
    MgO7.89.49.016.688.724.370.149.777.06
    CaO11.910.710.4210.137.259.445.587.149.70
    Cr2O30.30.230.040.04
    Na2O0.470.72.72.123.083.798.454.572.34
    K2O0.160.550.820.281.033.012.563.380.78
    MnO0.20.140.180.20.140.341.20.130.20
    P2O50.050.510.660.20.30.540.610.740.25
    SO3n.a.n.a.n.a.n.a.n.a.n.a.n.a.n.a.0.71
    合计99.7899.8398.9499.4798.9499.6498.8999.8199.86
    下载: 导出CSV
  • [1]

    李雯, 徐可宁, 黄勇, 等. 基于SLM的模拟月壤原位成形技术[J]. 北京航空航天大学学报, 2019, 45(10):1931-1937. LI W, XU K N, HUANG Y, et al. SLM-based in situ forming technique for simulated lunar soil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10):1931-1937. doi: 10.13700/j.bh.1001-5965.2018.0690

    LI W, XU K N, HUANG Y, et al. SLM-based in situ forming technique for simulated lunar soil [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1931-1937. doi: 10.13700/j.bh.1001-5965.2018.0690

    [2]

    王功, 赵伟, 刘亦飞, 等. 太空制造技术发展现状与展望[J]. 中国科学:物理学力学天文学, 2020, 50(4):95-105. WANG G, ZHAO W, LIU Y F, et al. Current status and prospects of space manufacturing technology development[J]. Chinese Science:Physics, Mechanics, Astronomy, 2020, 50(4):95-105.

    WANG G, ZHAO W, LIU Y F, et al. Current status and prospects of space manufacturing technology development [J]. Chinese Science: Physics, Mechanics, Astronomy, 2020, 50(4): 95-105.

    [3]

    孙一萌, 陈盛贵, 花开慧, 等. 模拟月壤原位增材制造技术研究进展[J]. 材料研究与应用, 2021, 15(2):178-185. SUN Y M, CHEN S G, HUA K H, et al. Research progress on in situ additive manufacturing technology for simulated lunar soil[J]. Materials Research and Applications, 2021, 15(2):178-185. doi: 10.3969/j.issn.1673-9981.2021.02.014

    SUN Y M, CHEN S G, HUA K H, et al. Research progress on in situ additive manufacturing technology for simulated lunar soil [J]. Materials Research and Applications, 2021, 15(2): 178-185. doi: 10.3969/j.issn.1673-9981.2021.02.014

    [4]

    Devezas T, Melo F C L D, Gregori M L, et al. The struggle for space: Past and future of the space race [J]. Technological Forecasting & Social Change, 2012, 79(5).

    [5]

    Niu X, Singh S, Garg A, et al. Review of materials used in laser-aided additive manufacturing processes to produce metallic products [J]. Frontiers of Mechanical Engineering, 2019, 14(3).

    [6]

    A. T S, M. M. Laser additive manufacturing of titanium-based functionally graded materials: areview [J]. Journal of Materials Engineering and Performance, 2022, 31(8).

    [7]

    Ding Y, Dwivedi R, Kovacevic R. Process planning for 8-axis robotized laser-based direct metal deposition system: A case on building revolved part [J]. Robotics and Computer Integrated Manufacturing, 2017, 44.

    [8]

    Buchbinder D, Schleifenbaum H, Heidrich S, et al. High power selective laser melting (HP SLM) of aluminum parts [J]. Physics Procedia, 2011, 12.

    [9]

    Lee P-H, Chang E, Yu S, et al. Modification and characteristics of biodegradable polymer suitable for selective laser sintering [J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(6).

    [10]

    Vehse M, Seitz H. A new micro-stereolithography-system based on diode laser curing (DLC) [J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(10).

    [11]

    Elisabeth P, Jeremias H, Florian B, et al. Wear resistance of 3D-printed materials: A systematic review [J]. Dentistry Review, 2022, 2(2).

    [12]

    Hua Z, Lu M, Shaoying L, et al. Development of lunar regolith composite and structure via laser-assisted sintering[J]. Frontiers of Mechanical Engineering, 2022, 17(1):6-18. doi: 10.1007/s11465-021-0662-2

    [13]

    Füri E, L. Z, A. E. S. Apollo 15 green glass He-Ne-Ar signatures – In search for indigenous lunar noble gases [J]. Geochemical Perspectives Letters, 2018, (1-5).

    [14]

    Füri E, Zimmermann L, Deloule E, et al. Cosmic ray effects on the isotope composition of hydrogen and noble gases in lunar samples: Insights from Apollo 12018 [J]. Earth and Planetary Science Letters, 2020, 550(116550).

    [15]

    O’brien P B S. Physical and chemical evolution of lunar mare regolith[J]. J Geophys Res Planets, 2021, 126:1-47.

    [16]

    Xu X, Hui H, Chen W, et al. Formation of lunar highlands anorthosites[J]. Earth and Planetary Science Letters, 2020, 536(116138):1-11.

    [17]

    石忠宁, 刘爱民, 管晋钊, 等. 月壤资源原位提取金属和制备氧气的方法与技术[J]. 材料与冶金学报, 2022, 21(2):79-94. SHI Z N, LIU A M, GUAN J Z, et al. Methods and techniques for in situ extraction of metals and preparation of oxygen from lunar soil resources[J]. Journal of Materials and Metallurgy, 2022, 21(2):79-94. doi: 10.14186/j.cnki.1671-6620.2022.02.001

    SHI Z N, LIU A M, GUAN J Z, et al. Methods and techniques for in situ extraction of metals and preparation of oxygen from lunar soil resources [J]. Journal of Materials and Metallurgy, 2022, 21(2): 79-94. doi: 10.14186/j.cnki.1671-6620.2022.02.001

    [18]

    Liu M, Tang W, Duan W, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International, 2018, 45(5):5829-5836.

    [19]

    Qian Y, Xiao L, Yin S, et al. The regolith properties of the Chang'e-5 landing region and the ground drilling experiments using lunar regolith simulants[J]. Icarus, 2020, 337(113508):1-13.

    [20]

    Zhou S, Lu C, Zhu X, et al. Preparation and characterization of high-strength geopolymer based on bh-1 lunar soil simulant with low alkali content[J]. Engineering, 2021, 7(11):1631-1645. doi: 10.1016/j.eng.2020.10.016

    [21]

    Tracie P, Niki W, Frank L, et al. 3D printing in zero g technology demonstration mission: complete experimental results and summary of related material modeling efforts [J]. The International journal, advanced manufacturing technology, 2019, 101(1-4).

    [22]

    王敏, 于涛, 张骁, 等. 美国在轨制造技术发展现状及启示[J]. 航天器工程, 2019, 28(3):86-91. WANG M, YU T, ZHANG X, et al. Current status and insights of the development of in-orbit manufacturing technology in the United States[J]. Spacecraft Engineering, 2019, 28(3):86-91.

    WANG M, YU T, ZHANG X, et al. Current status and insights of the development of in-orbit manufacturing technology in the United States [J]. Spacecraft Engineering, 2019, 28(3): 86-91.

    [23]

    田小永, 李涤尘, 卢秉恒. 空间3D打印技术现状与前景[J]. 载人航天, 2016, 22(4):471-476. TIAN X Y, LI D C, LU B H. Current status and prospects of space 3D printing technology[J]. Manned Spaceflight, 2016, 22(4):471-476. doi: 10.3969/j.issn.1674-5825.2016.04.011

    TIAN X Y, LI D C, LU B H. Current status and prospects of space 3D printing technology [J]. Manned Spaceflight, 2016, 22(4): 471-476. doi: 10.3969/j.issn.1674-5825.2016.04.011

    [24]

    Balla, Krishna V, Roberson, et al. First demonstration on direct laser fabrication of lunar regolith parts[J]. Rapid Prototyping Journal, 2012, 18(6):451-457. doi: 10.1108/13552541211271992

    [25]

    王超, 张光, 吕晓辰, 等. 模拟月壤激光熔融成型工艺参数实验初探[J]. 航天器环境工程, 2021, 38(5):575-580. WANG C, ZHANG G, LYU X C, et al. A preliminary investigation of simulated lunar soil laser melting and forming process parameters[J]. Spacecraft Environmental Engineering, 2021, 38(5):575-580. doi: 10.12126/see.2021.05.013

    WANG C, ZHANG G, LYU X C, et al. A preliminary investigation of simulated lunar soil laser melting and forming process parameters [J]. Spacecraft Environmental Engineering, 2021, 38(5): 575-580. doi: 10.12126/see.2021.05.013

    [26]

    Hintze P E, Quintana S. Building a lunar or martian launch pad with in situ materials: recent laboratory and field studies[J]. Journal of Aerospace Engineering, 2013, 26(1):134-142. doi: 10.1061/(ASCE)AS.1943-5525.0000205

    [27]

    Yuan P F, Xinjie Z, Hao W, et al. Robotic 3D printed lunar bionic architecture based on lunar regolith selective laser sintering technology[J]. Architectural Intelligence, 2022, 1(1):1-17. doi: 10.1007/s44223-022-00002-z

    [28]

    RinaldiM, Ferrara, et al. Additive manufacturing of polyether ether ketone-based composites for space application: a mini-review [J]. CEAS Space Journal, 2021, 1(1-11).

    [29]

    Toutanji H A, Evans S, Grugel R N. Performance of lunar sulfur concrete in lunar environments[J]. Construction and Building Materials, 2012, 29:444-448. doi: 10.1016/j.conbuildmat.2011.10.041

    [30]

    Taylor, A. P, Kahanpää, et al. On pressure measurement and seasonal pressure variations during the Phoenix mission[J]. Journal of Geophysical Research Planets, 2010, 115:1-11.

    [31]

    Wan L, Wendner R, Cusatis G. A novel material for in situ construction on Mars: experiments and numerical simulations[J]. Construction and Building Materials, 2016, 120:222-231. doi: 10.1016/j.conbuildmat.2016.05.046

    [32]

    Montes C, Broussard K, Gongre M, et al. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications[J]. Advances in Space Research, 2015, 56(6):1212-1221. doi: 10.1016/j.asr.2015.05.044

    [33]

    Hertel T, Pontikes Y. Geopolymers, inorganic polymers, alkali-activated materials and hybrid binders from bauxite residue (red mud) – Putting things in perspective[J]. Journal of Cleaner Production, 2020, 258:120610. doi: 10.1016/j.jclepro.2020.120610

    [34]

    Taylor S L, Jakus A E, Koube K D, et al. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks[J]. Acta Astronautica, 2018, 143:1-8. doi: 10.1016/j.actaastro.2017.11.005

    [35]

    Jakus A E, D K K, R G N, et al. Robust and elastic lunar and martian structures from 3d-printed regolith inks[J]. Scientific Reports, 2017, 71(7):1-8.

    [36]

    Zhao H, Lu M, Shaoying L, et al. Development of lunar regolith composite and structure via laser-assisted sintering [J]. Frontiers of Mechanical Engineering, 2022, 17(1).

    [37]

    Cesaretti G, Dini E, De Kestelier X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica, 2014, 93:430-450. doi: 10.1016/j.actaastro.2013.07.034

    [38]

    刘洋, 周建平, 张晓天. 增材制造技术在载人航天工程中的应用与展望 [J]. 北京航空航天大学学报, 2022: 1-11.

    LIU Y, ZHOU J P, ZHANG X T. Application and prospect of additive manufacturing technology in human space engineering [J]. Journal of Beijing University of Aeronautics and Astronautics, 2022: 1-11.

    [39]

    Liu M, Tang W, Duan W, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International, 2019, 45(5):5829-5836. doi: 10.1016/j.ceramint.2018.12.049

    [40]

    Dou R, Tang W Z, Wang L, et al. Sintering of lunar regolith structures fabricated via digital light processing[J]. Ceramics International, 2019, 45(14):17210-17215. doi: 10.1016/j.ceramint.2019.05.276

    [41]

    Schlüter L, Cowley A, Pennec Y, et al. Gas purification for oxygen extraction from lunar regolith[J]. Acta Astronautica, 2021, 179:371-381. doi: 10.1016/j.actaastro.2020.11.014

    [42]

    Chen H, Guanglin N, Yehua L, et al. Improving relative density and mechanical strength of lunar regolith structures via DLP-stereolithography integrated with powder surface modification process[J]. Ceramics International, 2022, 48(18):26874-26883. doi: 10.1016/j.ceramint.2022.05.390

    [43]

    Sun J, Binner J, Bai J. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography[J]. Journal of the European Ceramic Society, 2019, 39(4):1660-1667. doi: 10.1016/j.jeurceramsoc.2018.10.024

    [44]

    Liu Y, Cheng L, Li H, et al. Formation mechanism of stereolithography of Si3N4 slurry using silane coupling agent as modifier and dispersant[J]. Ceramics International, 2020, 46(10):14583-14590. doi: 10.1016/j.ceramint.2020.02.258

    [45]

    Wang C, Gong H, Wei W, et al. Vat photopolymerization of low-titanium lunar regolith simulant for optimal mechanical performance[J]. Ceramics International, 2022, 48(20):29752-29762. doi: 10.1016/j.ceramint.2022.06.235

    [46]

    Reitz B, Lotz C, Gerdes N, et al. Additive manufacturing under lunar gravity and microgravity[J]. Microgravity Science and Technology, 2021, 33(25):1-12.

    [47]

    Fateri M, Sottong R, Kolbe M, et al. Thermal properties of processed lunar regolith simulant[J]. International Journal of Applied Ceramic Technology, 2019, 16(6):2419-2428. doi: 10.1111/ijac.13267

    [48]

    Goulas A, Friel R J. 3D printing with moondust[J]. Rapid Prototyping Journal, 2016, 22(6):864-870. doi: 10.1108/RPJ-02-2015-0022

    [49]

    Goulas A, Binner J G P, Harris R A, et al. Assessing extraterrestrial regolith material simulants for in situ resource utilisation based 3d printing[J]. Applied Materials Today, 2017, 6:54-61. doi: 10.1016/j.apmt.2016.11.004

    [50]

    Levent K, David K, Aleksander G, et al. Cold sintering as a promising ISRU technique: A case study of Mars regolith simulant[J]. Icarus, 2023, 389(115270):1-8.

  • 加载中

(1)

(2)

计量
  • 文章访问数:  633
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2022-12-29
刊出日期:  2023-12-25

目录