Mineral Chemical Characteristics and Constraint on Metamorphic Temperature of Garnet from the Liwu Group, Western Sichuan, China
-
摘要:
这是一篇地球科学领域的论文。为揭示江浪穹隆核部里伍岩群中石榴子石的矿物化学特征及其变质温度,本文选择了发育在不同位置的石榴子石矿物开展了主量、微量和稀土元素分析测试。结果表明,江浪穹隆片岩中的石榴子石端元组成主要为铁铝榴石(Alm),利用ICP-MS(平均含量85.82%)和LA-ICP-MS(平均含量83.51%)获得的铁铝榴石(Alm)含量在误差范围内基本一致;稀土元素(REE)总量较高,分配模式呈现明显的轻稀土亏损(LREE)、重稀土(HREE)富集的左倾分配模式,Eu异常不明显,负Ce异常显著;相对富集高场强元素(如U、Ta、Hf),亏损大离子亲石元素(如K、Sr、Ba)。另外,江浪穹隆片岩中利用石榴子石矿物获得的变质温度为512~583 ℃,形成的变质压力较低,且变质温度与至新火山花岗岩的距离呈负相关关系。综上,江浪穹隆经历了高绿片岩相的巴罗式变质作用。
Abstract:This is an article in the field of earth sciences. To reveal the mineral chemistry characteristics and metamorphic temperature of garnet in the Liwu Group due to core of Jianglang dome, the major, trace and rare earth elements of garnet were analyzed at different locations in this paper. The results show that the major-element composition of garnet in schist from the Jianglang dome is mainly Alm. ICP-MS (average content 85.82%) and LA-ICP-MS (average content 83.51%) is basically consistent within the error range of the Alm content obtained.The total content of rare earth elements (REE) is high, and show obvious LREE-depleted and HREE-enriched left-declined REE distribution patterns, with unobvious Eu anomalies and negative Ce anomalies, Enriched in large ionic strength elements (U, Ta, Hf)and depleted high field lithophile elements (K, Sr, Ba). In addition, the formation temperature of garnet in schist from the Jianglang dome is 512~583 ℃, and the formed metamorphic pressure is relatively low. It is a negative correlation between the metamorphic temperature and the distance to the Xinhuoshan granite. In conclusion, the Jianglang dome experienced “Barrovian-type” metamorphism of high greenschist facies.
-
Key words:
- Earth sciences /
- Garnet /
- Mineral chemistry /
- Liwu Group-complex /
- Jianglang dome
-
-
图 1 江浪穹隆地质简图[5]
Figure 1.
图 5 江浪穹隆片岩中石榴子石微量元素配分模式[21]
Figure 5.
图 6 江浪穹隆片岩中石榴子石稀土元素配分模式 [21]
Figure 6.
表 1 江浪穹隆中石榴子石的ICP-MS成分分析结果及相关参数计算/(g/t)
Table 1. ICP-MS results and calculated parameters of garnet in schist from the Jianglang dome
样品号 WJG-W3 PM29-110 PM16-7 PM07-55 081801 Mn* 0.286 4.350 0.723 1.590 1.460 Mg* 2.030 1.180 1.020 1.440 1.030 Ca* 1.050 1.280 1.870 1.940 1.240 Fe* 28.50 24.90 28.20 26.20 28.50 Sc 39.90 40.00 57.20 87.00 63.70 Ti 228.0 200.0 169.0 283.0 197.0 V 45.50 26.10 25.10 42.20 28.00 Cr 88.70 67.80 60.40 82.20 66.50 Co 32.60 13.30 13.50 9.800 15.30 Ni 0.290 0.777 0.733 1.120 1.170 Rb 0.250 3.340 2.070 7.060 2.530 Sr 2.250 19.70 7.990 6.410 8.880 Y 116.0 0.182* 698.0 439.0 828.0 Zr 173.0 107.0 42.00 74.40 50.00 Nb 0.343 0.253 0.577 2.380 0.177 Mo 0.095 1.090 0.074 0.132 0.027 Cd 0.261 1.540 0.432 1.380 1.130 Cs 0.029 0.023 0.049 1.070 0.111 Ba 0.419 0.578 1.340 4.100 1.290 La 14.30 14.20 8.010 5.700 38.80 Ce 32.00 27.30 15.40 11.10 72.60 Pr 4.100 3.120 1.760 1.280 8.380 Nd 16.20 11.50 6.550 4.700 30.60 Sm 4.600 3.720 2.720 1.420 7.730 Eu 0.640 1.240 1.040 0.470 2.030 Gd 9.610 21.20 17.10 8.440 24.90 Tb 2.470 14.70 8.820 5.000 12.20 Dy 17.50 198.0 90.00 56.40 121.0 Ho 3.710 59.60 23.60 14.60 29.40 Er 10.30 196.0 74.90 44.30 88.90 Tm 1.510 31.60 11.90 6.980 14.10 Yb 8.830 194.0 71.00 44.10 84.30 Lu 1.290 27.40 9.890 6.340 11.70 Hf 4.530 3.500 1.430 2.200 1.780 Ta 0.057 0.265 0.227 0.298 0.158 Pb 4.110 2.190 1.610 3.790 3.620 Th 9.240 6.340 3.790 3.140 18.10 U 1.870 1.240 1.880 0.630 2.430 ∑REE 127.06 803.58 342.69 210.83 546.64 LREE 71.84 61.08 35.48 24.67 160.1 HREE 55.22 742.5 307.2 186.2 386.5 δEu 0.294 0.427 0.466 0.415 0.447 δCe 1.024 1.006 1.006 1.008 0.987 (La/Yb)N 1.162 0.053 0.081 0.093 0.3301 LREE/HREE 1.300 0.082 0.115 0.133 0.414 *单位为% 表 2 江浪穹隆核部石榴子石样品(WJG-W4)的LA-ICP-MS成分分析结果及相关参数计算/(g/t)
Table 2. LA-ICP-MS results and calculated parameters of garnet sample(WJG-W4) in schist from the Jianglang dome
样品 WJG-W4 点位 边部 边部 内环 核部 核部 核部 核部 内环 边部 边部 Mn* 5.048 2.803 2.617 2.472 2.801 2.881 2.282 2.277 2.564 2.670 Mg* 0.281 1.499 1.555 1.526 1.555 1.499 1.565 1.573 1.540 1.483 Ca* 1.557 0.799 0.838 0.828 0.830 0.825 0.825 0.830 0.762 0.757 Fe* 38.47 20.63 21.03 20.53 21.04 20.75 20.51 20.72 20.63 20.10 K 14.75 7.410 7.700 7.570 6.720 6.360 6.960 6.460 7.800 94.29 Sc 218.6 136.8 132.9 106.3 126.5 141.1 98.39 106.7 123.5 113.5 Ti 245.6 165.1 115.1 142.6 103.7 158.4 128.2 190.8 104.9 84.43 V 199.5 106.3 92.02 114.2 103.5 113.1 148.0 159.1 89.67 92.48 Cr 439.8 206.6 161.3 176.4 147.1 271.9 249.1 225.4 166.5 134.8 Co 56.51 30.70 30.58 30.35 30.04 28.96 28.98 28.29 26.61 25.85 Ni 195.0 61.93 49.62 30.62 29.03 22.07 12.45 9.850 16.06 9.290 Rb 128.9 15.35 9.510 6.270 4.360 3.250 1.720 1.540 1.490 1.590 Sr 513.7 3.710 1.960 1.330 0.980 0.790 0.370 0.250 0.310 1.040 Y 303.9 234.3 217.3 82.29 281.2 184.7 36.54 28.32 0.182* 0.332* Zr 169.6 18.99 18.79 2.890 2.650 19.32 3.020 4.110 3.030 2.710 Nb 422.0 1.970 1.340 0.780 0.340 0.340 0.100 0.159 0.144 0.088 Cs 1163 4.140 2.670 1.750 1.250 0.820 0.460 0.410 0.430 0.300 Ba 2568.7 15.78 5.270 4.820 3.310 2.600 1.310 1.180 1.040 3.990 La 375.7 1.560 0.100 0.310 0.188 0.230 0.079 0.116 0.114 0.069 Ce 624.4 1.100 0.580 0.260 0.230 0.117 0.083 0.123 0.057 0.270 Pr 726.6 0.580 0.610 0.390 0.120 0.172 0.071 0.061 0.042 0.044 Nd 397.0 9.660 4.500 3.010 1.470 1.340 0.620 0.82 0.370 0.330 Sm 252.1 45.85 28.67 26.54 18.46 13.63 10.24 9.370 5.300 4.290 Eu 390.0 20.50 12.28 10.11 6.420 4.620 3.520 2.580 1.840 1.440 Gd 73.97 37.61 36.37 32.65 37.87 32.01 23.48 20.87 26.77 27.77 Tb 176.1 77.20 62.80 34.22 55.10 38.91 12.06 9.85 16.78 20.55 Dy 92.06 62.19 58.99 26.99 73.29 52.66 13.53 11.65 45.92 74.39 Ho 209.2 121.4 84.81 22.53 77.05 38.25 4.620 3.130 16.68 33.09 Er 116.6 99.97 80.32 18.77 87.84 40.48 4.470 3.020 26.07 62.79 Tm 355.0 58.42 28.98 4.260 19.73 6.970 0.510 0.390 3.570 8.140 Yb 211.1 144.2 87.45 16.39 84.25 27.63 7.930 1.800 17.42 44.09 Lu 404.9 30.34 12.20 1.640 8.090 2.960 0.190 0.150 1.830 4.380 Hf 218.9 10.58 6.450 0.730 0.530 3.880 0.260 0.330 0.380 0.160 Ta 2212 0.370 0.190 0.040 0.108 0.055 0.039 0.034 0.027 0.023 Re 815.5 4.030 2.130 1.590 0.840 0.350 0.204 0.213 0.300 0.009 Pb 594.1 1.380 0.840 0.380 0.410 0.270 0.138 0.140 0.183 0.310 Th 353.8 0.620 0.100 0.149 0.091 0.090 0.066 0.040 0.045 0.011 U 431.9 1.130 1.170 0.090 0.150 0.420 0.050 0.048 0.029 0.048 ∑REE 4404.705 710.56 498.66 198.07 470.11 259.98 81.40 63.93 162.76 281.64 LREE 2766.8 79.25 46.74 40.62 26.89 20.11 14.61 13.07 7.720 6.440 HREE 1638.95 631.31 451.92 157.45 443.22 239.87 66.79 50.86 155.04 275.2 δEu 6.700 1.460 1.160 1.050 0.730 0.650 0.670 0.550 0.380 0.300 δCe 0.220 0.280 0.280 0.160 0.370 0.140 0.250 0.360 0.200 1.170 (La/Yb)N 1.280 0.008 0.001 0.014 0.002 0.006 0.007 0.046 0.005 0.001 LREE/HREE 1.690 0.126 0.103 0.258 0.061 0.084 0.219 0.257 0.050 0.023 *单位为% 表 3 江浪穹隆核部石榴子石样品(081801-1、081801-2)的LA-ICP-MS成分分析结果及相关参数计算/(g/t)
Table 3. LA-ICP-MS results and calculated parameters of garnet samples(081801-1、081801-2) in schist from the Jianglang dome
样品 081801-1 081801-2 点位 边部 内环 核部 核部 内环 边部 边部 内环 核部 核部 内环 边部 Mn* 2.966 3.060 3.001 2.181 1.646 2.926 1.568 1.075 1.637 1.036 0.425 1.303 Mg* 0.589 0.601 0.596 0.687 0.717 0.614 0.716 0.567 0.712 0.758 0.880 0.742 Ca* 0.883 0.930 0.913 0.901 0.840 0.926 0.852 0.623 0.888 0.897 0.666 0.817 Fe* 19.85 20.07 20.08 21.42 21.57 20.39 21.48 16.83 21.36 21.93 22.65 21.56 K 7.530 6.560 7.100 7.220 6.900 6.470 7.000 6.110 7.960 6.980 8.570 8.950 Sc 26.21 22.93 24.19 47.48 24.29 32.07 24.28 17.28 34.57 51.00 56.18 23.09 Ti 147.8 127.8 122.4 152.2 82.38 146.3 79.50 39.71 143.0 123.0 43.52 77.92 V 26.62 26.83 25.01 25.19 22.39 26.49 21.62 18.49 27.77 24.02 16.74 20.68 Cr 61.90 59.67 51.95 69.02 56.51 67.45 52.82 43.95 60.38 50.29 47.51 44.57 Co 13.06 12.57 12.67 13.79 13.44 12.44 13.42 10.68 13.18 13.64 15.15 13.15 Ni 4.900 6.620 5.450 6.220 5.980 3.920 5.890 4.120 4.970 2.730 6.270 4.700 Rb 1.260 1.260 1.190 0.830 0.750 0.650 0.670 0.570 0.650 0.570 0.650 0.660 Sr 0.560 0.400 0.360 0.176 0.200 0.170 0.140 0.101 0.138 0.124 0.124 0.120 Y 1627 1596 1489 666.0 1482 1258 1204 967.0 776.0 318.0 81.20 1192 Zr 2.420 2.090 2.140 3.520 2.450 2.580 2.910 1.610 3.280 4.130 2.350 3.000 Nb 0.107 0.059 0.118 0.085 0.075 0.067 0.073 0.051 0.040 0.051 0.073 0.100 Cs 0.249 0.194 0.214 0.201 0.188 0.154 0.170 0.151 0.153 0.168 0.171 0.159 Ba 0.470 0.500 1.110 0.650 0.660 0.430 0.290 0.410 0.560 0.410 0.650 0.560 La 0.042 0.045 0.050 0.034 0.021 0.027 0.045 0.0232 0.045 0.040 0.033 0.007 Ce 0.037 0.027 0.007 0.041 0.036 0.016 0.010 0.009 0.027 0.020 0.029 0.008 Pr 0.038 0.020 0.023 0.037 0.038 0.030 0.016 0.015 0.035 0.014 0.021 0.032 Nd 0.360 0.370 0.320 0.540 0.200 0.590 0.290 0.180 0.350 0.460 0.260 0.320 Sm 2.820 2.740 2.540 4.380 2.470 2.800 2.320 1.560 3.280 2.290 1.510 1.820 Eu 0.950 1.090 0.930 1.490 1.330 0.940 1.140 0.910 1.220 2.130 1.280 1.240 Gd 22.22 21.52 21.78 31.14 26.51 23.78 25.43 15.71 29.46 20.83 11.37 20.44 Tb 19.03 17.97 17.38 20.10 23.98 17.02 19.81 14.04 17.45 13.40 5.290 16.96 Dy 177.9 168.3 161.0 120.0 218.3 151.0 181.0 149.0 135.0 87.81 25.64 189.0 Ho 130.1 119.9 103.6 46.90 107.0 73.83 74.31 57.29 43.90 16.69 4.570 63.47 Er 555.9 513.6 424.5 127.0 335.2 252.5 242.0 164.0 124.0 26.62 10.11 168.0 Tm 122.4 113.6 89.56 19.63 53.64 45.71 38.93 23.10 18.51 2.620 1.740 22.03 Yb 969.9 919.6 738.4 121.5 335.6 354.8 261.4 138.2 113.8 13.73 15.71 123.1 Lu 124.1 123.6 113.0 13.24 34.17 50.06 29.36 14.02 12.05 1.580 3.130 11.65 Hf 0.180 0.190 0.180 0.140 0.160 0.150 0.171 0.073 0.130 0.140 0.173 0.110 Ta 0.040 0.048 0.051 0.066 0.023 0.052 0.017 0.016 0.025 0.023 0.007 0.021 Re 0.025 0.116 0.043 0.087 0.153 0.024 0.094 0.060 0.082 0.017 0.122 0.017 Pb 0.098 0.079 0.082 0.059 0.069 0.059 0.056 0.050 0.056 0.045 0.066 0.082 Th 0.021 0.003 0.008 0.009 0.014 0.013 0.018 0.003 0.015 0.011 0.028 0.005 U 0.100 0.140 0.160 0.200 0.080 0.150 0.074 0.023 0.075 0.079 0.019 0.042 ∑REE 2125.83 2002.42 1672.80 505.97 1138.92 973.05 875.74 578.25 499.42 188.23 80.69 618.45 LREE 4.250 4.290 3.870 6.520 4.100 4.400 3.820 2.700 4.960 4.950 3.130 3.430 HREE 2121.58 1998.13 1668.93 499.45 1134.82 968.65 871.92 575.55 494.46 183.28 77.56 615.02 δEu 0.260 0.310 0.260 0.290 0.320 0.240 0.280 0.360 0.260 0.630 0.680 0.380 δCe 0.210 0.220 0.050 0.250 0.240 0.120 0.090 0.110 0.160 0.210 0.260 0.070 (La/Yb)N <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 0.002 <0.001 LREE/HREE 0.002 0.002 0.002 0.013 0.004 0.005 0.004 0.005 0.010 0.027 0.040 0.006 *单位为% 表 4 江浪穹隆片岩石榴子石的钇(Y)含量及变质温度计算
Table 4. Calculation of yttrium (Y) content and metamorphic temperature of garnet in schist form the Jianglang dome
样品 采集地点 分析测试方法 Y/(g/t) 温度/℃ 与新火山花岗
岩距离/kmWJG-W3 挖金沟 ICP-MS 116 617 6.65 PM29-110 PM29 ICP-MS 1820 499 12.14 PM16-7 PM16 ICP-MS 698 538 13.45 PM07-55 PM07 ICP-MS 439 556 8.18 081801 里伍 ICP-MS 828 530 7.53 081801-1 里伍 LA-ICP-MS 1353 512 8.23 081801-2 里伍 LA-ICP-MS 891 531 8.95 WJG-W4 挖金沟 LA-ICP-MS 248 583 7.32 -
[1] Grew E S, Locockck A J, Galuskina I O, et al. Nomenclature of the garnet super group[J]. American Mineralogist, 2013, 98:785-810. doi: 10.2138/am.2013.4201
[2] 汪镜亮. 石榴子石应用概述[J]. 矿产综合利用, 1993(4):15-22.WANG J L. Application of garnet[J]. Multipurpose Utilization of Mineral Resources, 1993(4):15-22.
WANG J L . Application of garnet[J]. Multipurpose Utilization of Mineral Resources,1993 (4 ):15 -22 .[3] 叶紫枫, 杨光树, 覃龙江, 等. 云南大红山铁铜矿床石榴子石特征与地质意义[J]. 矿物学报, 2022, 42(4):461-477.YE Z F, YANG G S, QIN L J, et al. Characteristics and geological significances of the garnets in the Dahongshan iron-copper deposit, Yunnan, China[J]. Acta Mineralogica Sinica, 2022, 42(4):461-477.
YE Z F, YANG G S, QIN L J, et al . Characteristics and geological significances of the garnets in the Dahongshan iron-copper deposit, Yunnan, China[J]. Acta Mineralogica Sinica,2022 ,42 (4 ):461 -477 .[4] 谭洪旗, 罗丽萍, 周家云, 等. 川西锦屏地区青纳金矿床的发现及地质意义[J]. 科学技术与工程, 2016, 16(21):12-19.TAN H Q, LUO L P, ZHOU J Y, et al. Discovery of Qingna gold deposit in Jinping Area and is geological significance, Western Sichuan[J]. Science Technology and Engineering, 2016, 16(21):12-19.
TAN H Q, LUO L P, ZHOU J Y, et al . Discovery of Qingna gold deposit in Jinping Area and is geological significance, Western Sichuan[J]. Science Technology and Engineering,2016 ,16 (21 ):12 -19 .[5] 谭洪旗. 松潘—甘孜地块南缘穹隆体物质组成、变形—变质特征及成矿响应[D]. 成都: 成都理工大学, 2019.TAN H Q. The composition, deformation-metamorphic characteristics and metallogenic response of the dome geological bodies on the South Margin of Songpan-Garze Block[D]. Chengdu: Chengdu University of Technology, 2019.
TAN H Q. The composition, deformation-metamorphic characteristics and metallogenic response of the dome geological bodies on the South Margin of Songpan-Garze Block[D]. Chengdu: Chengdu University of Technology, 2019. [6] 刘晓佳, 许志琴. 松潘-甘孜造山带南部江浪穹隆中侏罗世花岗岩及构造意义[J]. 地质学报, 2021, 95:1754-1773.LIU X J, XU Z Q. Tectonic significance of Middle Jurassic granites in the Jianglang dome, southern Songpan-Ganzi orogen belt[J]. Acta Geologica Sinica, 2021, 95:1754-1773.
LIU X J, XU Z Q . Tectonic significance of Middle Jurassic granites in the Jianglang dome, southern Songpan-Ganzi orogen belt[J]. Acta Geologica Sinica,2021 ,95 :1754 -1773 .[7] 周家云, 谭洪旗, 龚大兴, 等. 川西江浪穹隆核部新火山花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素研究[J]. 矿物岩石, 2013, 33(4):42-52.ZHOU J Y, TAN H Q, GONG D X, et al. Zircon la-icp-ms u-pb dating and Hf isotopic composition of Xinhuoshan granite in the core of Jianglang Dome, Western Sichuan, China[J]. Journal of Mineralogy and Petrology, 2013, 33(4):42-52.
ZHOU J Y, TAN H Q, GONG D X, et al . Zircon la-icp-ms u-pb dating and Hf isotopic composition of Xinhuoshan granite in the core of Jianglang Dome, Western Sichuan, China[J]. Journal of Mineralogy and Petrology,2013 ,33 (4 ):42 -52 .[8] 周家云, 谭洪旗, 龚大兴, 等. 乌拉溪铝质A型花岗岩: 松潘-甘孜造山带早燕山期热隆伸展的岩石记录[J]. 地质论评, 2014, 60(2):348-362.ZHOU J Y, TAN H Q, GONG D X, et al. Wulaxi aluminous A-type granite in Western Sichuan, China: recordingearly Yanshanian lithospheric thermo-upwelling extension of Songpan-Garze Orogenic Belt[J]. Geological Review, 2014, 60(2):348-362.
ZHOU J Y, TAN H Q, GONG D X, et al . Wulaxi aluminous A-type granite in Western Sichuan, China: recordingearly Yanshanian lithospheric thermo-upwelling extension of Songpan-Garze Orogenic Belt[J]. Geological Review,2014 ,60 (2 ):348 -362 .[9] 许志琴, 侯立玮, 王宗秀, 等. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992: 1-6.XU Z Q, HOU L W, WANG Z X, et al. The orogenic process of the Songpan-Garze orogenic belt in China[M]. Beijing: Geology Press, 1992: 1-6.
XU Z Q, HOU L W, WANG Z X, et al. The orogenic process of the Songpan-Garze orogenic belt in China[M]. Beijing: Geology Press, 1992: 1-6. [10] 傅昭仁, 宋鸿林, 颜丹平. 扬子地台西缘江浪变质核杂岩结构及对成矿的控制[J]. 地质学报, 1997, 71(2):113-122.FU Z R, SONG H L, YAN D P. The structure of the jianglang metamorphic core complex in the western margin of the Yangtze platform and its control on metallization[J]. Acta Geologica Sinica, 1997, 71(2):113-122.
FU Z R, SONG H L, YAN D P . The structure of the jianglang metamorphic core complex in the western margin of the Yangtze platform and its control on metallization[J]. Acta Geologica Sinica,1997 ,71 (2 ):113 -122 .[11] 代堰锫, 朱玉娣, 张惠华, 等. 川西江浪穹窿二叠纪大理岩微量元素与碳、氧同位素组成: 对古沉积环境的指示[J]. 地球化学, 2017, 46(3):231-239.DAI Y P, ZHU Y D, ZHANG H H, et al. Trace element and C-O isotopic constraints on the ancient depositional environment of Permian marble in the Jianglang dome, western Sichuan Province[J]. Geochimica, 2017, 46(3):231-239.
DAI Y P, ZHU Y D, ZHANG H H, et al . Trace element and C-O isotopic constraints on the ancient depositional environment of Permian marble in the Jianglang dome, western Sichuan Province[J]. Geochimica,2017 ,46 (3 ):231 -239 .[12] 李同柱, 冯孝良, 代堰锫, 等. 川西里伍式富铜矿床成矿地质条件及找矿前景分析[J]. 沉积与特提斯地质, 2016, 36(3):8-15.LI T Z, FENG X L, DAI Y P, et al. The geology and exploration potential of the Liwu-type copper-rich deposits in western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2016, 36(3):8-15.
LI T Z, FENG X L, DAI Y P, et al . The geology and exploration potential of the Liwu-type copper-rich deposits in western Sichuan[J]. Sedimentary Geology and Tethyan Geology,2016 ,36 (3 ):8 -15 .[13] 袁华云, 周清, 丁俊, 等. 川西江浪岩组碎屑锆石U-Pb年代学研究[J]. 矿物学报, 2017, 37(3):296-304.YUAN H Y, ZHOU Q, DING J, et al. U-Pb geochronological studies on detrital zircon in Jianglang Group, Western Sichuan Province, China[J]. Acta Mineralogica Sinica, 2017, 37(3):296-304.
YUAN H Y, ZHOU Q, DING J, et al . U-Pb geochronological studies on detrital zircon in Jianglang Group, Western Sichuan Province, China[J]. Acta Mineralogica Sinica,2017 ,37 (3 ):296 -304 .[14] 刘晓佳, 许志琴, 郑艺龙, 等. 松潘-甘孜地体东南缘长枪穹隆核部里伍群碎屑锆石年代学和Hf同位素特征及其构造意义[J]. 岩石学报, 2019, 35(6):1693-1716.LIU X J, XU Z Q, ZHENG Y L, et al. Characteristics of detrital zircon U-Pb geochronology and Hf isotopics from Liwu Group within the Changqiang dome on the southeastern margin of Songpan-Ganzi terrane and its tectonic implications[J]. Acta Petrologica Sinica, 2019, 35(6):1693-1716. doi: 10.18654/1000-0569/2019.06.05
doi: 10.18654/1000-0569/2019.06.05LIU X J, XU Z Q, ZHENG Y L, et al . Characteristics of detrital zircon U-Pb geochronology and Hf isotopics from Liwu Group within the Changqiang dome on the southeastern margin of Songpan-Ganzi terrane and its tectonic implications[J]. Acta Petrologica Sinica,2019 ,35 (6 ):1693 -1716 .[15] 谭洪旗, 朱志敏, 周雄, 等. 川西九龙地区两期伟晶岩型稀有金属成矿作用[J]. 矿产综合利用, 2022(1):15-24.TAN H Q, ZHU Z M, ZHOU X, et al. Two periods rare metal mineralization of the pegmatite in Jiulong Area, Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022(1):15-24.
TAN H Q, ZHU Z M, ZHOU X, et al . Two periods rare metal mineralization of the pegmatite in Jiulong Area, Western Sichuan[J]. Multipurpose Utilization of Mineral Resources,2022 (1 ):15 -24 .[16] 唐高林, 张惠华, 代堰锫, 等. 川西江浪穹窿核部里伍岩群变质岩的地球化学特征及成岩构造背景[J]. 矿物岩石, 2016, 36(1):41-47.TANG G L, ZHANG H H, DAI Y P, et al. Geochemical features and tectonic setting of metamorphic rocks in the Liwu Group, core of the Jianglang dome, Western Sichuan Province[J]. Journal of Mineralogy and Petrology, 2016, 36(1):41-47.
TANG G L, ZHANG H H, DAI Y P, et al . Geochemical features and tectonic setting of metamorphic rocks in the Liwu Group, core of the Jianglang dome, Western Sichuan Province[J]. Journal of Mineralogy and Petrology,2016 ,36 (1 ):41 -47 .[17] 谭洪旗, 朱志敏, 罗林洪, 等. 川西洛莫地区燕山早期花岗岩对稀有金属成矿的制约[J]. 地质学报, 2023, 97(2):396-416.TAN H Q, ZHU Z M, LUO L H, et al. Distribution of early Yanshanian granite and its constraints on the mineralization of rare metals in Luomo area, western Sichuan[J]. Acta Geologica Sinica, 2023, 97(2):396-416. doi: 10.3969/j.issn.0001-5717.2023.02.007
doi: 10.3969/j.issn.0001-5717.2023.02.007TAN H Q, ZHU Z M, LUO L H, et al . Distribution of early Yanshanian granite and its constraints on the mineralization of rare metals in Luomo area, western Sichuan[J]. Acta Geologica Sinica,2023 ,97 (2 ):396 -416 .[18] 罗丽萍, 胡军亮, 谭洪旗, 等. 川西上基拱伟晶岩型铍矿绿柱石矿物化学特征[J]. 矿产综合利用, 2021(5):113-119.LUO L P, HU J L, TAN H Q. et al. Mineralogical characteristics of the pegmatite type beryl in Shangjigong, Western Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):113-119.
LUO L P, HU J L, TAN H Q . et al. Mineralogical characteristics of the pegmatite type beryl in Shangjigong, Western Sichuan Province[J]. Multipurpose Utilization of Mineral Resources,2021 (5 ):113 -119 .[19] 岳倩. 皖南燕山期花岗岩年代学与岩石成因[D]. 合肥: 合肥工业大学, 2020.YUE Q. Geochronology and petrogenesis of Yanshanian granites in southern Anhui[D]. Hefei: Hefei University of Technology, 2020
YUE Q. Geochronology and petrogenesis of Yanshanian granites in southern Anhui[D]. Hefei: Hefei University of Technology, 2020 [20] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2005, 28(3):353-370.
[21] Sun S S, Mcdonough W F. Chemical and isotopic systematics of Oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[22] 刘春花, 杨林, 尹京武, 等. 新疆库鲁克塔格兴地塔格群中石榴子石的矿物学特征研究[J]. 岩石矿物学杂志, 2011, 30(2):234-242.LIU C H, YANG L, YIN J W, et al. Mineralogical characteristics of garnets from Xingditage Group of Kuruk Tag, Xin jiang[J]. Acta Petrologica et Mineralogica, 2011, 30(2):234-242.
LIU C H, YANG L, YIN J W, et al . Mineralogical characteristics of garnets from Xingditage Group of Kuruk Tag, Xin jiang[J]. Acta Petrologica et Mineralogica,2011 ,30 (2 ):234 -242 .[23] Clarke G L, Aitchison J C, Cluzel D. Eclogites and Blueschists of the Pam Peninsula, NE New Caledonia: a Reappraisal[J]. Journal of Petrology, 1997, 38(7):843-876. doi: 10.1093/petroj/38.7.843
[24] Krippner A, Meinhold G, Morton A C, et al. Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks[J]. Sedimentary Geology, 2014, 306:36-52. doi: 10.1016/j.sedgeo.2014.03.004
[25] 高利娥, 曾令森, 石卫刚, 等. 喜马拉雅造山带新生代花岗岩中两类石榴子石的地球化学特征及其在地壳深熔作用中的意义[J]. 岩石学报, 2012, 28(9):2963-2980.GAO L E, ZENG L S, SHI W G, et al. Two types of garnets in the Cenozoic granites from the Himayalan Orogenic Belt: Geochemical characteristics and implications for crustal anatexis[J]. Acta Petrologica Sinica, 2012, 28(9):2963-2980.
GAO L E, ZENG L S, SHI W G, et al . Two types of garnets in the Cenozoic granites from the Himayalan Orogenic Belt: Geochemical characteristics and implications for crustal anatexis[J]. Acta Petrologica Sinica,2012 ,28 (9 ):2963 -2980 .[26] 郁凡, 舒启海, 曾庆文, 等. 湘南新田岭矽卡岩型钨矿床石榴子石成分特征及其地质意义[J]. 岩石学报, 2022, 38(1):78-90.YU F, SHU Q H, ZENG Q W, et al. Chemical composition of garnet from the Xintianling skarn W deposit in southern Hunan and its geological significance[J]. Acta Petrologica Sinica, 2022, 38(1):78-90. doi: 10.18654/1000-0569/2022.01.06
doi: 10.18654/1000-0569/2022.01.06YU F, SHU Q H, ZENG Q W, et al . Chemical composition of garnet from the Xintianling skarn W deposit in southern Hunan and its geological significance[J]. Acta Petrologica Sinica,2022 ,38 (1 ):78 -90 .[27] 洪东铭, 简星, 黄鑫, 等. 石榴子石微量元素地球化学及其在沉积物源分析中的应用[J]. 地学前缘, 2020, 27(3):191-201.HONG D M, JIAN X, HUANG X, et al. Garnet trace elemental geochemistry and its application in sedimentary provenance analysis[J]. Earth Science Frontiers, 2020, 27(3):191-201.
HONG D M, JIAN X, HUANG X, et al . Garnet trace elemental geochemistry and its application in sedimentary provenance analysis[J]. Earth Science Frontiers,2020 ,27 (3 ):191 -201 .[28] Bea F, Pereira M, Stroh A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study)[J]. Chemical Geology, 1994, 117(1):291-312.
[29] Gaspar M, Knaack C, Meinert L D, et al. REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1):185-205. doi: 10.1016/j.gca.2007.09.033
[30] 孙承兴, 王世杰, 季宏兵. 碳酸盐岩风化成土过程中REE超常富集及Ce强烈亏损的地球化学机理[J]. 地球化学, 2002(2): 119-129.SUN C X, WANG S J, JI H B. Formation mechanism of the superhigh concentration of REE and the strong negative Ce anomalies in the carbonate rock weathering profiles in Guizhou Province, China[J]. Geochimica, 2002(02): 119-129.
SUN C X, WANG S J, JI H B. Formation mechanism of the superhigh concentration of REE and the strong negative Ce anomalies in the carbonate rock weathering profiles in Guizhou Province, China[J]. Geochimica, 2002(02): 119-129. [31] 王娟, 张妍, 宋传中, 等. 石榴子石钇(Y)元素电子探针分析及应用—以佛子岭石榴云母片岩为例[J]. 岩石学报, 2022, 38(3):619-638.WANG J, ZHANG Y, SONG C Z, et al. Analysis and application of yttrium element in garnet by electron micro-probe analyzer: A case study of garnet-mica schist from Foziling Group[J]. Acta Petrologica Sinica, 2022, 38(3):619-638. doi: 10.18654/1000-0569/2022.03.03
doi: 10.18654/1000-0569/2022.03.03WANG J, ZHANG Y, SONG C Z, et al . Analysis and application of yttrium element in garnet by electron micro-probe analyzer: A case study of garnet-mica schist from Foziling Group[J]. Acta Petrologica Sinica,2022 ,38 (3 ):619 -638 .[32] Pyle J M, Spear F S. Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions[J]. American Mineralogist, 1999, 1(6):1-49.
[33] Pyle J M, Spear F S. An empirical garnet (YAG)-xenotime thermometer[J]. Contributions to Mineralogy & Petrology, 2000, 138(1):51.
[34] Borghi A, Cossio R, Mazzoli C. A mineralogical application of micro-PIXE technique: Yttrium zoning in garnet from metamorphic rocks and its petrologic meaning[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2002, 189:412-417.
[35] Carlson W D. Rates and mechanism of Y, REE, and Cr diffusion in garnet[J]. American Mineralogist, 2012, 97(10):1598-1618. doi: 10.2138/am.2012.4108
-