川西里伍岩群中石榴子石矿物化学特征及其对变质温度的限定

黄驰轩, 谭洪旗, 杨玉龙, 王强, 胡军亮, 唐尧. 川西里伍岩群中石榴子石矿物化学特征及其对变质温度的限定[J]. 矿产综合利用, 2024, 45(1): 15-26. doi: 10.3969/j.issn.1000-6532.2024.01.003
引用本文: 黄驰轩, 谭洪旗, 杨玉龙, 王强, 胡军亮, 唐尧. 川西里伍岩群中石榴子石矿物化学特征及其对变质温度的限定[J]. 矿产综合利用, 2024, 45(1): 15-26. doi: 10.3969/j.issn.1000-6532.2024.01.003
HUANG Chixuan, TAN Hongqi, YANG Yulong, WANG Qiang, HU Junliang, TANG Yao. Mineral Chemical Characteristics and Constraint on Metamorphic Temperature of Garnet from the Liwu Group, Western Sichuan, China[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 15-26. doi: 10.3969/j.issn.1000-6532.2024.01.003
Citation: HUANG Chixuan, TAN Hongqi, YANG Yulong, WANG Qiang, HU Junliang, TANG Yao. Mineral Chemical Characteristics and Constraint on Metamorphic Temperature of Garnet from the Liwu Group, Western Sichuan, China[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 15-26. doi: 10.3969/j.issn.1000-6532.2024.01.003

川西里伍岩群中石榴子石矿物化学特征及其对变质温度的限定

  • 基金项目: 国家自然科学基金项目(41603034);中国地质调查局项目(DD20221697)
详细信息
    作者简介: 黄驰轩(1999-),男,在读硕士研究生,研究方向为矿床地球化学
    通讯作者: 谭洪旗(1984-),男,博士,高级工程师,主要从事基础地质调查工作。
  • 中图分类号: TD15

Mineral Chemical Characteristics and Constraint on Metamorphic Temperature of Garnet from the Liwu Group, Western Sichuan, China

More Information
  • 这是一篇地球科学领域的论文。为揭示江浪穹隆核部里伍岩群中石榴子石的矿物化学特征及其变质温度,本文选择了发育在不同位置的石榴子石矿物开展了主量、微量和稀土元素分析测试。结果表明,江浪穹隆片岩中的石榴子石端元组成主要为铁铝榴石(Alm),利用ICP-MS(平均含量85.82%)和LA-ICP-MS(平均含量83.51%)获得的铁铝榴石(Alm)含量在误差范围内基本一致;稀土元素(REE)总量较高,分配模式呈现明显的轻稀土亏损(LREE)、重稀土(HREE)富集的左倾分配模式,Eu异常不明显,负Ce异常显著;相对富集高场强元素(如U、Ta、Hf),亏损大离子亲石元素(如K、Sr、Ba)。另外,江浪穹隆片岩中利用石榴子石矿物获得的变质温度为512~583 ℃,形成的变质压力较低,且变质温度与至新火山花岗岩的距离呈负相关关系。综上,江浪穹隆经历了高绿片岩相的巴罗式变质作用。

  • 加载中
  • 图 1  江浪穹隆地质简图[5]

    Figure 1. 

    图 2  江浪穹隆片岩中石榴子石镜下照片

    Figure 2. 

    图 3  江浪穹隆片岩中石榴子石端元成分

    Figure 3. 

    图 4  江浪穹隆片岩中石榴子石主要元素成分剖面

    Figure 4. 

    图 5  江浪穹隆片岩中石榴子石微量元素配分模式[21]

    Figure 5. 

    图 6  江浪穹隆片岩中石榴子石稀土元素配分模式 [21]

    Figure 6. 

    图 7  江浪穹隆片岩中石榴子石三元图解[24-25]

    Figure 7. 

    表 1  江浪穹隆中石榴子石的ICP-MS成分分析结果及相关参数计算/(g/t)

    Table 1.  ICP-MS results and calculated parameters of garnet in schist from the Jianglang dome

    样品号WJG-W3PM29-110PM16-7PM07-55081801
    Mn*0.2864.3500.7231.5901.460
    Mg*2.0301.1801.0201.4401.030
    Ca*1.0501.2801.8701.9401.240
    Fe*28.5024.9028.2026.2028.50
    Sc39.9040.0057.2087.0063.70
    Ti228.0200.0169.0283.0197.0
    V45.5026.1025.1042.2028.00
    Cr88.7067.8060.4082.2066.50
    Co32.6013.3013.509.80015.30
    Ni0.2900.7770.7331.1201.170
    Rb0.2503.3402.0707.0602.530
    Sr2.25019.707.9906.4108.880
    Y116.00.182*698.0439.0828.0
    Zr173.0107.042.0074.4050.00
    Nb0.3430.2530.5772.3800.177
    Mo0.0951.0900.0740.1320.027
    Cd0.2611.5400.4321.3801.130
    Cs0.0290.0230.0491.0700.111
    Ba0.4190.5781.3404.1001.290
    La14.3014.208.0105.70038.80
    Ce32.0027.3015.4011.1072.60
    Pr4.1003.1201.7601.2808.380
    Nd16.2011.506.5504.70030.60
    Sm4.6003.7202.7201.4207.730
    Eu0.6401.2401.0400.4702.030
    Gd9.61021.2017.108.44024.90
    Tb2.47014.708.8205.00012.20
    Dy17.50198.090.0056.40121.0
    Ho3.71059.6023.6014.6029.40
    Er10.30196.074.9044.3088.90
    Tm1.51031.6011.906.98014.10
    Yb8.830194.071.0044.1084.30
    Lu1.29027.409.8906.34011.70
    Hf4.5303.5001.4302.2001.780
    Ta0.0570.2650.2270.2980.158
    Pb4.1102.1901.6103.7903.620
    Th9.2406.3403.7903.14018.10
    U1.8701.2401.8800.6302.430
    ∑REE127.06803.58342.69210.83546.64
    LREE71.8461.0835.4824.67160.1
    HREE55.22742.5307.2186.2386.5
    δEu0.2940.4270.4660.4150.447
    δCe1.0241.0061.0061.0080.987
    (La/Yb)N1.1620.0530.0810.0930.3301
    LREE/HREE1.3000.0820.1150.1330.414
    *单位为%
    下载: 导出CSV

    表 2  江浪穹隆核部石榴子石样品(WJG-W4)的LA-ICP-MS成分分析结果及相关参数计算/(g/t)

    Table 2.  LA-ICP-MS results and calculated parameters of garnet sample(WJG-W4) in schist from the Jianglang dome

    样品 WJG-W4
    点位 边部 边部 内环 核部 核部 核部 核部 内环 边部 边部
    Mn* 5.048 2.803 2.617 2.472 2.801 2.881 2.282 2.277 2.564 2.670
    Mg* 0.281 1.499 1.555 1.526 1.555 1.499 1.565 1.573 1.540 1.483
    Ca* 1.557 0.799 0.838 0.828 0.830 0.825 0.825 0.830 0.762 0.757
    Fe* 38.47 20.63 21.03 20.53 21.04 20.75 20.51 20.72 20.63 20.10
    K 14.75 7.410 7.700 7.570 6.720 6.360 6.960 6.460 7.800 94.29
    Sc 218.6 136.8 132.9 106.3 126.5 141.1 98.39 106.7 123.5 113.5
    Ti 245.6 165.1 115.1 142.6 103.7 158.4 128.2 190.8 104.9 84.43
    V 199.5 106.3 92.02 114.2 103.5 113.1 148.0 159.1 89.67 92.48
    Cr 439.8 206.6 161.3 176.4 147.1 271.9 249.1 225.4 166.5 134.8
    Co 56.51 30.70 30.58 30.35 30.04 28.96 28.98 28.29 26.61 25.85
    Ni 195.0 61.93 49.62 30.62 29.03 22.07 12.45 9.850 16.06 9.290
    Rb 128.9 15.35 9.510 6.270 4.360 3.250 1.720 1.540 1.490 1.590
    Sr 513.7 3.710 1.960 1.330 0.980 0.790 0.370 0.250 0.310 1.040
    Y 303.9 234.3 217.3 82.29 281.2 184.7 36.54 28.32 0.182* 0.332*
    Zr 169.6 18.99 18.79 2.890 2.650 19.32 3.020 4.110 3.030 2.710
    Nb 422.0 1.970 1.340 0.780 0.340 0.340 0.100 0.159 0.144 0.088
    Cs 1163 4.140 2.670 1.750 1.250 0.820 0.460 0.410 0.430 0.300
    Ba 2568.7 15.78 5.270 4.820 3.310 2.600 1.310 1.180 1.040 3.990
    La 375.7 1.560 0.100 0.310 0.188 0.230 0.079 0.116 0.114 0.069
    Ce 624.4 1.100 0.580 0.260 0.230 0.117 0.083 0.123 0.057 0.270
    Pr 726.6 0.580 0.610 0.390 0.120 0.172 0.071 0.061 0.042 0.044
    Nd 397.0 9.660 4.500 3.010 1.470 1.340 0.620 0.82 0.370 0.330
    Sm 252.1 45.85 28.67 26.54 18.46 13.63 10.24 9.370 5.300 4.290
    Eu 390.0 20.50 12.28 10.11 6.420 4.620 3.520 2.580 1.840 1.440
    Gd 73.97 37.61 36.37 32.65 37.87 32.01 23.48 20.87 26.77 27.77
    Tb 176.1 77.20 62.80 34.22 55.10 38.91 12.06 9.85 16.78 20.55
    Dy 92.06 62.19 58.99 26.99 73.29 52.66 13.53 11.65 45.92 74.39
    Ho 209.2 121.4 84.81 22.53 77.05 38.25 4.620 3.130 16.68 33.09
    Er 116.6 99.97 80.32 18.77 87.84 40.48 4.470 3.020 26.07 62.79
    Tm 355.0 58.42 28.98 4.260 19.73 6.970 0.510 0.390 3.570 8.140
    Yb 211.1 144.2 87.45 16.39 84.25 27.63 7.930 1.800 17.42 44.09
    Lu 404.9 30.34 12.20 1.640 8.090 2.960 0.190 0.150 1.830 4.380
    Hf 218.9 10.58 6.450 0.730 0.530 3.880 0.260 0.330 0.380 0.160
    Ta 2212 0.370 0.190 0.040 0.108 0.055 0.039 0.034 0.027 0.023
    Re 815.5 4.030 2.130 1.590 0.840 0.350 0.204 0.213 0.300 0.009
    Pb 594.1 1.380 0.840 0.380 0.410 0.270 0.138 0.140 0.183 0.310
    Th 353.8 0.620 0.100 0.149 0.091 0.090 0.066 0.040 0.045 0.011
    U 431.9 1.130 1.170 0.090 0.150 0.420 0.050 0.048 0.029 0.048
    ∑REE 4404.705 710.56 498.66 198.07 470.11 259.98 81.40 63.93 162.76 281.64
    LREE 2766.8 79.25 46.74 40.62 26.89 20.11 14.61 13.07 7.720 6.440
    HREE 1638.95 631.31 451.92 157.45 443.22 239.87 66.79 50.86 155.04 275.2
    δEu 6.700 1.460 1.160 1.050 0.730 0.650 0.670 0.550 0.380 0.300
    δCe 0.220 0.280 0.280 0.160 0.370 0.140 0.250 0.360 0.200 1.170
    (La/Yb)N 1.280 0.008 0.001 0.014 0.002 0.006 0.007 0.046 0.005 0.001
    LREE/HREE 1.690 0.126 0.103 0.258 0.061 0.084 0.219 0.257 0.050 0.023
    *单位为%
    下载: 导出CSV

    表 3  江浪穹隆核部石榴子石样品(081801-1、081801-2)的LA-ICP-MS成分分析结果及相关参数计算/(g/t)

    Table 3.  LA-ICP-MS results and calculated parameters of garnet samples(081801-1、081801-2) in schist from the Jianglang dome

    样品 081801-1 081801-2
    点位 边部 内环 核部 核部 内环 边部 边部 内环 核部 核部 内环 边部
    Mn* 2.966 3.060 3.001 2.181 1.646 2.926 1.568 1.075 1.637 1.036 0.425 1.303
    Mg* 0.589 0.601 0.596 0.687 0.717 0.614 0.716 0.567 0.712 0.758 0.880 0.742
    Ca* 0.883 0.930 0.913 0.901 0.840 0.926 0.852 0.623 0.888 0.897 0.666 0.817
    Fe* 19.85 20.07 20.08 21.42 21.57 20.39 21.48 16.83 21.36 21.93 22.65 21.56
    K 7.530 6.560 7.100 7.220 6.900 6.470 7.000 6.110 7.960 6.980 8.570 8.950
    Sc 26.21 22.93 24.19 47.48 24.29 32.07 24.28 17.28 34.57 51.00 56.18 23.09
    Ti 147.8 127.8 122.4 152.2 82.38 146.3 79.50 39.71 143.0 123.0 43.52 77.92
    V 26.62 26.83 25.01 25.19 22.39 26.49 21.62 18.49 27.77 24.02 16.74 20.68
    Cr 61.90 59.67 51.95 69.02 56.51 67.45 52.82 43.95 60.38 50.29 47.51 44.57
    Co 13.06 12.57 12.67 13.79 13.44 12.44 13.42 10.68 13.18 13.64 15.15 13.15
    Ni 4.900 6.620 5.450 6.220 5.980 3.920 5.890 4.120 4.970 2.730 6.270 4.700
    Rb 1.260 1.260 1.190 0.830 0.750 0.650 0.670 0.570 0.650 0.570 0.650 0.660
    Sr 0.560 0.400 0.360 0.176 0.200 0.170 0.140 0.101 0.138 0.124 0.124 0.120
    Y 1627 1596 1489 666.0 1482 1258 1204 967.0 776.0 318.0 81.20 1192
    Zr 2.420 2.090 2.140 3.520 2.450 2.580 2.910 1.610 3.280 4.130 2.350 3.000
    Nb 0.107 0.059 0.118 0.085 0.075 0.067 0.073 0.051 0.040 0.051 0.073 0.100
    Cs 0.249 0.194 0.214 0.201 0.188 0.154 0.170 0.151 0.153 0.168 0.171 0.159
    Ba 0.470 0.500 1.110 0.650 0.660 0.430 0.290 0.410 0.560 0.410 0.650 0.560
    La 0.042 0.045 0.050 0.034 0.021 0.027 0.045 0.0232 0.045 0.040 0.033 0.007
    Ce 0.037 0.027 0.007 0.041 0.036 0.016 0.010 0.009 0.027 0.020 0.029 0.008
    Pr 0.038 0.020 0.023 0.037 0.038 0.030 0.016 0.015 0.035 0.014 0.021 0.032
    Nd 0.360 0.370 0.320 0.540 0.200 0.590 0.290 0.180 0.350 0.460 0.260 0.320
    Sm 2.820 2.740 2.540 4.380 2.470 2.800 2.320 1.560 3.280 2.290 1.510 1.820
    Eu 0.950 1.090 0.930 1.490 1.330 0.940 1.140 0.910 1.220 2.130 1.280 1.240
    Gd 22.22 21.52 21.78 31.14 26.51 23.78 25.43 15.71 29.46 20.83 11.37 20.44
    Tb 19.03 17.97 17.38 20.10 23.98 17.02 19.81 14.04 17.45 13.40 5.290 16.96
    Dy 177.9 168.3 161.0 120.0 218.3 151.0 181.0 149.0 135.0 87.81 25.64 189.0
    Ho 130.1 119.9 103.6 46.90 107.0 73.83 74.31 57.29 43.90 16.69 4.570 63.47
    Er 555.9 513.6 424.5 127.0 335.2 252.5 242.0 164.0 124.0 26.62 10.11 168.0
    Tm 122.4 113.6 89.56 19.63 53.64 45.71 38.93 23.10 18.51 2.620 1.740 22.03
    Yb 969.9 919.6 738.4 121.5 335.6 354.8 261.4 138.2 113.8 13.73 15.71 123.1
    Lu 124.1 123.6 113.0 13.24 34.17 50.06 29.36 14.02 12.05 1.580 3.130 11.65
    Hf 0.180 0.190 0.180 0.140 0.160 0.150 0.171 0.073 0.130 0.140 0.173 0.110
    Ta 0.040 0.048 0.051 0.066 0.023 0.052 0.017 0.016 0.025 0.023 0.007 0.021
    Re 0.025 0.116 0.043 0.087 0.153 0.024 0.094 0.060 0.082 0.017 0.122 0.017
    Pb 0.098 0.079 0.082 0.059 0.069 0.059 0.056 0.050 0.056 0.045 0.066 0.082
    Th 0.021 0.003 0.008 0.009 0.014 0.013 0.018 0.003 0.015 0.011 0.028 0.005
    U 0.100 0.140 0.160 0.200 0.080 0.150 0.074 0.023 0.075 0.079 0.019 0.042
    ∑REE 2125.83 2002.42 1672.80 505.97 1138.92 973.05 875.74 578.25 499.42 188.23 80.69 618.45
    LREE 4.250 4.290 3.870 6.520 4.100 4.400 3.820 2.700 4.960 4.950 3.130 3.430
    HREE 2121.58 1998.13 1668.93 499.45 1134.82 968.65 871.92 575.55 494.46 183.28 77.56 615.02
    δEu 0.260 0.310 0.260 0.290 0.320 0.240 0.280 0.360 0.260 0.630 0.680 0.380
    δCe 0.210 0.220 0.050 0.250 0.240 0.120 0.090 0.110 0.160 0.210 0.260 0.070
    (La/Yb)N <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 0.002 <0.001
    LREE/HREE 0.002 0.002 0.002 0.013 0.004 0.005 0.004 0.005 0.010 0.027 0.040 0.006
    *单位为%
    下载: 导出CSV

    表 4  江浪穹隆片岩石榴子石的钇(Y)含量及变质温度计算

    Table 4.  Calculation of yttrium (Y) content and metamorphic temperature of garnet in schist form the Jianglang dome

    样品 采集地点 分析测试方法 Y/(g/t) 温度/℃ 与新火山花岗
    岩距离/km
    WJG-W3 挖金沟 ICP-MS 116 617 6.65
    PM29-110 PM29 ICP-MS 1820 499 12.14
    PM16-7 PM16 ICP-MS 698 538 13.45
    PM07-55 PM07 ICP-MS 439 556 8.18
    081801 里伍 ICP-MS 828 530 7.53
    081801-1 里伍 LA-ICP-MS 1353 512 8.23
    081801-2 里伍 LA-ICP-MS 891 531 8.95
    WJG-W4 挖金沟 LA-ICP-MS 248 583 7.32
    下载: 导出CSV
  • [1]

    Grew E S, Locockck A J, Galuskina I O, et al. Nomenclature of the garnet super group[J]. American Mineralogist, 2013, 98:785-810. doi: 10.2138/am.2013.4201

    [2]

    汪镜亮. 石榴子石应用概述[J]. 矿产综合利用, 1993(4):15-22.WANG J L. Application of garnet[J]. Multipurpose Utilization of Mineral Resources, 1993(4):15-22.

    WANG J L. Application of garnet[J]. Multipurpose Utilization of Mineral Resources, 1993(4):15-22.

    [3]

    叶紫枫, 杨光树, 覃龙江, 等. 云南大红山铁铜矿床石榴子石特征与地质意义[J]. 矿物学报, 2022, 42(4):461-477.YE Z F, YANG G S, QIN L J, et al. Characteristics and geological significances of the garnets in the Dahongshan iron-copper deposit, Yunnan, China[J]. Acta Mineralogica Sinica, 2022, 42(4):461-477.

    YE Z F, YANG G S, QIN L J, et al. Characteristics and geological significances of the garnets in the Dahongshan iron-copper deposit, Yunnan, China[J]. Acta Mineralogica Sinica, 2022, 42(4):461-477.

    [4]

    谭洪旗, 罗丽萍, 周家云, 等. 川西锦屏地区青纳金矿床的发现及地质意义[J]. 科学技术与工程, 2016, 16(21):12-19.TAN H Q, LUO L P, ZHOU J Y, et al. Discovery of Qingna gold deposit in Jinping Area and is geological significance, Western Sichuan[J]. Science Technology and Engineering, 2016, 16(21):12-19.

    TAN H Q, LUO L P, ZHOU J Y, et al. Discovery of Qingna gold deposit in Jinping Area and is geological significance, Western Sichuan[J]. Science Technology and Engineering, 2016, 16(21):12-19.

    [5]

    谭洪旗. 松潘—甘孜地块南缘穹隆体物质组成、变形—变质特征及成矿响应[D]. 成都: 成都理工大学, 2019.TAN H Q. The composition, deformation-metamorphic characteristics and metallogenic response of the dome geological bodies on the South Margin of Songpan-Garze Block[D]. Chengdu: Chengdu University of Technology, 2019.

    TAN H Q. The composition, deformation-metamorphic characteristics and metallogenic response of the dome geological bodies on the South Margin of Songpan-Garze Block[D]. Chengdu: Chengdu University of Technology, 2019.

    [6]

    刘晓佳, 许志琴. 松潘-甘孜造山带南部江浪穹隆中侏罗世花岗岩及构造意义[J]. 地质学报, 2021, 95:1754-1773.LIU X J, XU Z Q. Tectonic significance of Middle Jurassic granites in the Jianglang dome, southern Songpan-Ganzi orogen belt[J]. Acta Geologica Sinica, 2021, 95:1754-1773.

    LIU X J, XU Z Q. Tectonic significance of Middle Jurassic granites in the Jianglang dome, southern Songpan-Ganzi orogen belt[J]. Acta Geologica Sinica, 2021, 95:1754-1773.

    [7]

    周家云, 谭洪旗, 龚大兴, 等. 川西江浪穹隆核部新火山花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素研究[J]. 矿物岩石, 2013, 33(4):42-52.ZHOU J Y, TAN H Q, GONG D X, et al. Zircon la-icp-ms u-pb dating and Hf isotopic composition of Xinhuoshan granite in the core of Jianglang Dome, Western Sichuan, China[J]. Journal of Mineralogy and Petrology, 2013, 33(4):42-52.

    ZHOU J Y, TAN H Q, GONG D X, et al. Zircon la-icp-ms u-pb dating and Hf isotopic composition of Xinhuoshan granite in the core of Jianglang Dome, Western Sichuan, China[J]. Journal of Mineralogy and Petrology, 2013, 33(4):42-52.

    [8]

    周家云, 谭洪旗, 龚大兴, 等. 乌拉溪铝质A型花岗岩: 松潘-甘孜造山带早燕山期热隆伸展的岩石记录[J]. 地质论评, 2014, 60(2):348-362.ZHOU J Y, TAN H Q, GONG D X, et al. Wulaxi aluminous A-type granite in Western Sichuan, China: recordingearly Yanshanian lithospheric thermo-upwelling extension of Songpan-Garze Orogenic Belt[J]. Geological Review, 2014, 60(2):348-362.

    ZHOU J Y, TAN H Q, GONG D X, et al. Wulaxi aluminous A-type granite in Western Sichuan, China: recordingearly Yanshanian lithospheric thermo-upwelling extension of Songpan-Garze Orogenic Belt[J]. Geological Review, 2014, 60(2):348-362.

    [9]

    许志琴, 侯立玮, 王宗秀, 等. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992: 1-6.XU Z Q, HOU L W, WANG Z X, et al. The orogenic process of the Songpan-Garze orogenic belt in China[M]. Beijing: Geology Press, 1992: 1-6.

    XU Z Q, HOU L W, WANG Z X, et al. The orogenic process of the Songpan-Garze orogenic belt in China[M]. Beijing: Geology Press, 1992: 1-6.

    [10]

    傅昭仁, 宋鸿林, 颜丹平. 扬子地台西缘江浪变质核杂岩结构及对成矿的控制[J]. 地质学报, 1997, 71(2):113-122.FU Z R, SONG H L, YAN D P. The structure of the jianglang metamorphic core complex in the western margin of the Yangtze platform and its control on metallization[J]. Acta Geologica Sinica, 1997, 71(2):113-122.

    FU Z R, SONG H L, YAN D P. The structure of the jianglang metamorphic core complex in the western margin of the Yangtze platform and its control on metallization[J]. Acta Geologica Sinica, 1997, 71(2):113-122.

    [11]

    代堰锫, 朱玉娣, 张惠华, 等. 川西江浪穹窿二叠纪大理岩微量元素与碳、氧同位素组成: 对古沉积环境的指示[J]. 地球化学, 2017, 46(3):231-239.DAI Y P, ZHU Y D, ZHANG H H, et al. Trace element and C-O isotopic constraints on the ancient depositional environment of Permian marble in the Jianglang dome, western Sichuan Province[J]. Geochimica, 2017, 46(3):231-239.

    DAI Y P, ZHU Y D, ZHANG H H, et al. Trace element and C-O isotopic constraints on the ancient depositional environment of Permian marble in the Jianglang dome, western Sichuan Province[J]. Geochimica, 2017, 46(3):231-239.

    [12]

    李同柱, 冯孝良, 代堰锫, 等. 川西里伍式富铜矿床成矿地质条件及找矿前景分析[J]. 沉积与特提斯地质, 2016, 36(3):8-15.LI T Z, FENG X L, DAI Y P, et al. The geology and exploration potential of the Liwu-type copper-rich deposits in western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2016, 36(3):8-15.

    LI T Z, FENG X L, DAI Y P, et al. The geology and exploration potential of the Liwu-type copper-rich deposits in western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2016, 36(3):8-15.

    [13]

    袁华云, 周清, 丁俊, 等. 川西江浪岩组碎屑锆石U-Pb年代学研究[J]. 矿物学报, 2017, 37(3):296-304.YUAN H Y, ZHOU Q, DING J, et al. U-Pb geochronological studies on detrital zircon in Jianglang Group, Western Sichuan Province, China[J]. Acta Mineralogica Sinica, 2017, 37(3):296-304.

    YUAN H Y, ZHOU Q, DING J, et al. U-Pb geochronological studies on detrital zircon in Jianglang Group, Western Sichuan Province, China[J]. Acta Mineralogica Sinica, 2017, 37(3):296-304.

    [14]

    刘晓佳, 许志琴, 郑艺龙, 等. 松潘-甘孜地体东南缘长枪穹隆核部里伍群碎屑锆石年代学和Hf同位素特征及其构造意义[J]. 岩石学报, 2019, 35(6):1693-1716.LIU X J, XU Z Q, ZHENG Y L, et al. Characteristics of detrital zircon U-Pb geochronology and Hf isotopics from Liwu Group within the Changqiang dome on the southeastern margin of Songpan-Ganzi terrane and its tectonic implications[J]. Acta Petrologica Sinica, 2019, 35(6):1693-1716. doi: 10.18654/1000-0569/2019.06.05

    LIU X J, XU Z Q, ZHENG Y L, et al. Characteristics of detrital zircon U-Pb geochronology and Hf isotopics from Liwu Group within the Changqiang dome on the southeastern margin of Songpan-Ganzi terrane and its tectonic implications[J]. Acta Petrologica Sinica, 2019, 35(6):1693-1716. doi: 10.18654/1000-0569/2019.06.05

    [15]

    谭洪旗, 朱志敏, 周雄, 等. 川西九龙地区两期伟晶岩型稀有金属成矿作用[J]. 矿产综合利用, 2022(1):15-24.TAN H Q, ZHU Z M, ZHOU X, et al. Two periods rare metal mineralization of the pegmatite in Jiulong Area, Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022(1):15-24.

    TAN H Q, ZHU Z M, ZHOU X, et al. Two periods rare metal mineralization of the pegmatite in Jiulong Area, Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022(1):15-24.

    [16]

    唐高林, 张惠华, 代堰锫, 等. 川西江浪穹窿核部里伍岩群变质岩的地球化学特征及成岩构造背景[J]. 矿物岩石, 2016, 36(1):41-47.TANG G L, ZHANG H H, DAI Y P, et al. Geochemical features and tectonic setting of metamorphic rocks in the Liwu Group, core of the Jianglang dome, Western Sichuan Province[J]. Journal of Mineralogy and Petrology, 2016, 36(1):41-47.

    TANG G L, ZHANG H H, DAI Y P, et al. Geochemical features and tectonic setting of metamorphic rocks in the Liwu Group, core of the Jianglang dome, Western Sichuan Province[J]. Journal of Mineralogy and Petrology, 2016, 36(1):41-47.

    [17]

    谭洪旗, 朱志敏, 罗林洪, 等. 川西洛莫地区燕山早期花岗岩对稀有金属成矿的制约[J]. 地质学报, 2023, 97(2):396-416.TAN H Q, ZHU Z M, LUO L H, et al. Distribution of early Yanshanian granite and its constraints on the mineralization of rare metals in Luomo area, western Sichuan[J]. Acta Geologica Sinica, 2023, 97(2):396-416. doi: 10.3969/j.issn.0001-5717.2023.02.007

    TAN H Q, ZHU Z M, LUO L H, et al. Distribution of early Yanshanian granite and its constraints on the mineralization of rare metals in Luomo area, western Sichuan[J]. Acta Geologica Sinica, 2023, 97(2):396-416. doi: 10.3969/j.issn.0001-5717.2023.02.007

    [18]

    罗丽萍, 胡军亮, 谭洪旗, 等. 川西上基拱伟晶岩型铍矿绿柱石矿物化学特征[J]. 矿产综合利用, 2021(5):113-119.LUO L P, HU J L, TAN H Q. et al. Mineralogical characteristics of the pegmatite type beryl in Shangjigong, Western Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):113-119.

    LUO L P, HU J L, TAN H Q. et al. Mineralogical characteristics of the pegmatite type beryl in Shangjigong, Western Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):113-119.

    [19]

    岳倩. 皖南燕山期花岗岩年代学与岩石成因[D]. 合肥: 合肥工业大学, 2020.YUE Q. Geochronology and petrogenesis of Yanshanian granites in southern Anhui[D]. Hefei: Hefei University of Technology, 2020

    YUE Q. Geochronology and petrogenesis of Yanshanian granites in southern Anhui[D]. Hefei: Hefei University of Technology, 2020

    [20]

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2005, 28(3):353-370.

    [21]

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of Oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [22]

    刘春花, 杨林, 尹京武, 等. 新疆库鲁克塔格兴地塔格群中石榴子石的矿物学特征研究[J]. 岩石矿物学杂志, 2011, 30(2):234-242.LIU C H, YANG L, YIN J W, et al. Mineralogical characteristics of garnets from Xingditage Group of Kuruk Tag, Xin jiang[J]. Acta Petrologica et Mineralogica, 2011, 30(2):234-242.

    LIU C H, YANG L, YIN J W, et al. Mineralogical characteristics of garnets from Xingditage Group of Kuruk Tag, Xin jiang[J]. Acta Petrologica et Mineralogica, 2011, 30(2):234-242.

    [23]

    Clarke G L, Aitchison J C, Cluzel D. Eclogites and Blueschists of the Pam Peninsula, NE New Caledonia: a Reappraisal[J]. Journal of Petrology, 1997, 38(7):843-876. doi: 10.1093/petroj/38.7.843

    [24]

    Krippner A, Meinhold G, Morton A C, et al. Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks[J]. Sedimentary Geology, 2014, 306:36-52. doi: 10.1016/j.sedgeo.2014.03.004

    [25]

    高利娥, 曾令森, 石卫刚, 等. 喜马拉雅造山带新生代花岗岩中两类石榴子石的地球化学特征及其在地壳深熔作用中的意义[J]. 岩石学报, 2012, 28(9):2963-2980.GAO L E, ZENG L S, SHI W G, et al. Two types of garnets in the Cenozoic granites from the Himayalan Orogenic Belt: Geochemical characteristics and implications for crustal anatexis[J]. Acta Petrologica Sinica, 2012, 28(9):2963-2980.

    GAO L E, ZENG L S, SHI W G, et al. Two types of garnets in the Cenozoic granites from the Himayalan Orogenic Belt: Geochemical characteristics and implications for crustal anatexis[J]. Acta Petrologica Sinica, 2012, 28(9):2963-2980.

    [26]

    郁凡, 舒启海, 曾庆文, 等. 湘南新田岭矽卡岩型钨矿床石榴子石成分特征及其地质意义[J]. 岩石学报, 2022, 38(1):78-90.YU F, SHU Q H, ZENG Q W, et al. Chemical composition of garnet from the Xintianling skarn W deposit in southern Hunan and its geological significance[J]. Acta Petrologica Sinica, 2022, 38(1):78-90. doi: 10.18654/1000-0569/2022.01.06

    YU F, SHU Q H, ZENG Q W, et al. Chemical composition of garnet from the Xintianling skarn W deposit in southern Hunan and its geological significance[J]. Acta Petrologica Sinica, 2022, 38(1):78-90. doi: 10.18654/1000-0569/2022.01.06

    [27]

    洪东铭, 简星, 黄鑫, 等. 石榴子石微量元素地球化学及其在沉积物源分析中的应用[J]. 地学前缘, 2020, 27(3):191-201.HONG D M, JIAN X, HUANG X, et al. Garnet trace elemental geochemistry and its application in sedimentary provenance analysis[J]. Earth Science Frontiers, 2020, 27(3):191-201.

    HONG D M, JIAN X, HUANG X, et al. Garnet trace elemental geochemistry and its application in sedimentary provenance analysis[J]. Earth Science Frontiers, 2020, 27(3):191-201.

    [28]

    Bea F, Pereira M, Stroh A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study)[J]. Chemical Geology, 1994, 117(1):291-312.

    [29]

    Gaspar M, Knaack C, Meinert L D, et al. REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1):185-205. doi: 10.1016/j.gca.2007.09.033

    [30]

    孙承兴, 王世杰, 季宏兵. 碳酸盐岩风化成土过程中REE超常富集及Ce强烈亏损的地球化学机理[J]. 地球化学, 2002(2): 119-129.SUN C X, WANG S J, JI H B. Formation mechanism of the superhigh concentration of REE and the strong negative Ce anomalies in the carbonate rock weathering profiles in Guizhou Province, China[J]. Geochimica, 2002(02): 119-129.

    SUN C X, WANG S J, JI H B. Formation mechanism of the superhigh concentration of REE and the strong negative Ce anomalies in the carbonate rock weathering profiles in Guizhou Province, China[J]. Geochimica, 2002(02): 119-129.

    [31]

    王娟, 张妍, 宋传中, 等. 石榴子石钇(Y)元素电子探针分析及应用—以佛子岭石榴云母片岩为例[J]. 岩石学报, 2022, 38(3):619-638.WANG J, ZHANG Y, SONG C Z, et al. Analysis and application of yttrium element in garnet by electron micro-probe analyzer: A case study of garnet-mica schist from Foziling Group[J]. Acta Petrologica Sinica, 2022, 38(3):619-638. doi: 10.18654/1000-0569/2022.03.03

    WANG J, ZHANG Y, SONG C Z, et al. Analysis and application of yttrium element in garnet by electron micro-probe analyzer: A case study of garnet-mica schist from Foziling Group[J]. Acta Petrologica Sinica, 2022, 38(3):619-638. doi: 10.18654/1000-0569/2022.03.03

    [32]

    Pyle J M, Spear F S. Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions[J]. American Mineralogist, 1999, 1(6):1-49.

    [33]

    Pyle J M, Spear F S. An empirical garnet (YAG)-xenotime thermometer[J]. Contributions to Mineralogy & Petrology, 2000, 138(1):51.

    [34]

    Borghi A, Cossio R, Mazzoli C. A mineralogical application of micro-PIXE technique: Yttrium zoning in garnet from metamorphic rocks and its petrologic meaning[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2002, 189:412-417.

    [35]

    Carlson W D. Rates and mechanism of Y, REE, and Cr diffusion in garnet[J]. American Mineralogist, 2012, 97(10):1598-1618. doi: 10.2138/am.2012.4108

  • 加载中

(7)

(4)

计量
  • 文章访问数:  891
  • PDF下载数:  312
  • 施引文献:  0
出版历程
收稿日期:  2023-04-03
刊出日期:  2024-02-25

目录