西藏加查堆花岗岩锆石U-Pb年龄、地球化学及地质意义

永忠拉达, 卢君勇, 索朗顿旦, 罗兴海, 祝建华. 西藏加查堆花岗岩锆石U-Pb年龄、地球化学及地质意义[J]. 矿产综合利用, 2024, 45(1): 99-108, 134. doi: 10.3969/j.issn.1000-6532.2024.01.012
引用本文: 永忠拉达, 卢君勇, 索朗顿旦, 罗兴海, 祝建华. 西藏加查堆花岗岩锆石U-Pb年龄、地球化学及地质意义[J]. 矿产综合利用, 2024, 45(1): 99-108, 134. doi: 10.3969/j.issn.1000-6532.2024.01.012
YONGZHONGLADA, LU Junyong, SUOLANGDUNDAN, LUO Xinghai, ZHU Jianhua. Geochronology and Geochemistry of the Jiachadui Ganodiorite in Xizang and its Geological Implications[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 99-108, 134. doi: 10.3969/j.issn.1000-6532.2024.01.012
Citation: YONGZHONGLADA, LU Junyong, SUOLANGDUNDAN, LUO Xinghai, ZHU Jianhua. Geochronology and Geochemistry of the Jiachadui Ganodiorite in Xizang and its Geological Implications[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 99-108, 134. doi: 10.3969/j.issn.1000-6532.2024.01.012

西藏加查堆花岗岩锆石U-Pb年龄、地球化学及地质意义

  • 基金项目: 重要矿产资源调查计划项目:西藏加查地区矿产远景调查(12120113035000)
详细信息
    作者简介: 永忠拉达(1986-),男,学士,工程师,主要从事地质调查及矿产勘查工作
    通讯作者: 卢君勇(1987-),男,学士,工程师,主要从事地质调查及矿产勘查工作。
  • 中图分类号: TD989

Geochronology and Geochemistry of the Jiachadui Ganodiorite in Xizang and its Geological Implications

More Information
  • 这是一篇地球科学领域的论文。冈底斯带岩浆岩是青藏高原基础地质研究中的热门问题。现已有的研究主要集中在中新生代,本文对早古生代代表岩体加查堆似斑状黑云母二长花岗闪长岩利用LA-ICP-MS锆石U-Pb测年方法,结合岩石地球化学特征及各类图解法对加查堆花岗岩物源及区域构造属性进行分析,经研究表明岩石具有富铝(SiO2平均含量68.89%)、高碱(Na2O+K2O平均含量6.26%)、富钾(K2O/Na2O=1.03)、低TiO2(平均为0.50%)和准铝质(铝饱和指数A/CNK=0.933~1.033,平均0.991)的高钾钙碱性岩系特点。稀土元素表现Eu处呈负异常明显,为Eu亏损型,Ce具弱负异常;微量元素显示大离子亲石元素Rb、Th、Nd、La、K富集;高场强元素Nb、Ba、U、Ta、Ce、Sm、Ti亏损特征;反映了岩浆来源壳幔混合型,并有俯冲洋壳熔融存在。锆石LA-ICP-MS U-Pb同位素年龄为345.3±1.8 Ma,其形成时代为早石炭世。投点均落入I型花岗岩区,图解显示其形成于大陆岛弧环境,岩石经历了从板块碰撞前→同碰撞造山过程,显示了岩浆演化过程较长;火山岩组合及其地球化学特征标志着岛弧产生(初始岛弧)→发展(早期岛弧)→成熟(成熟岛弧)的演变过程。

  • 加载中
  • 图 1  青藏高原大地构造(据Yin and Harrison (2000)[10]和 Ma et al. (2014)[11]修改)

    Figure 1. 

    图 2  研究区地质简图

    Figure 2. 

    图 3  加查堆岩体露头及镜下照片(Kf-钾长石,bit-黑云母,Amp-角闪石,Q-石英,Pl-斜长石)

    Figure 3. 

    图 4  加查堆花岗闪长岩SiO2-Na2O+K2O(据Irvine等,1971[14];Middlemost,1994[15])和SiO2-K2O(据Rickwood,1989[16]

    Figure 4. 

    图 5  加查堆岩体稀土元素球粒陨石标准化图解

    Figure 5. 

    图 6  加查堆岩体微量元素原始地幔标准化图解

    Figure 6. 

    图 7  加查堆岩体锆石LA-ICP-MS U-Pb年龄谐和图

    Figure 7. 

    图 8  加查堆岩体构造环境判别[28]

    Figure 8. 

    图 9  加查堆岩体R1-R2构造环境判别[28]

    Figure 9. 

    图 10  加查堆岩体 Y+Nb-Rb 构造环境判别[28]

    Figure 10. 

    表 1  加查堆岩体主量元素(%)标准矿物及特征参数表及微量元素(g/t)和稀土元素(g/t)分析数据

    Table 1.  1 Major element compositions andtrace element and rare-earth element compositions in Jiachadui rock mass

    岩体样品号岩性化学成分/%
    SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5CO2H2O+H2O-
    加查堆
    岩体
    P1304/2-1似斑状黑云
    母二长花
    岗闪长岩
    68.680.5114.031.852.620.0321.392.682.963.550.120.441.120.19100.172
    P1304/6-268.540.4614.450.823.460.0471.123.863.332.760.120.270.380.0199.627
    P1304/8-169.450.5314.010.803.220.0411.433.052.993.190.110.260.860.0199.951
    样品号CIPW标准矿物及含量/%特征参数
    OrAbAnCDiHyQApσA·RA/CNKDISIA/MFC/MF
    P1304/2-121.2225.3310.011.71-6.1230.670.281.642.281.03377.2211.241.460.51
    P1304/6-216.4328.3816.45-0.437.6327.680.281.4520.93372.499.751.640.8
    P1304/8-119.0225.5313.060.9-8.0930.350.261.442.141.00774.912.31.520.6
    岩体样品号岩性微量元素含量/(g/t)
    RbSrZrNbThPbGaZnCuNiVCrHfScTaCoUBa
    加查堆
    岩体
    P1304/2-1似斑状黑云
    母二长花
    岗闪长岩
    170.6196178.414.015.418.216.872.815.44.0569.318.59.4211.81.249.181.44508.3
    P1304/6-2131.8269174.516.415.525.117.676.89.433.2871.615.812.711.91.469.172.96444.6
    P1304/8-1126.2221168.113.716.425.517.768.66.383.1759.916.310.010.61.188.113.58517.7
    样品号稀土元素含量/(g/t)特征参数
    LaCePrNdSmEuGdTbDyHoErTmYbLuYΣREELREEHREELREE/HREEδEuδCe(La/Yb)N
    P1304/2-145.680.69.0932.35.981.066.021.136.451.464.370.704.450.6345.2199.84174.6325.216.930.530.917.35
    P1304/6-241.873.38.4630.25.650.975.691.006.141.444.350.734.580.7145.1185.02160.3824.646.510.520.906.55
    P1304/8-145.178.28.8831.35.480.985.410.955.571.293.880.664.090.6340.3192.42169.9422.487.560.540.907.91
    下载: 导出CSV

    表 2  加查堆岩体锆石LA-ICP-MS U-Pb同位素分析结果

    Table 2.  LA-ICP-MS U-Pb isotopic data of zircon from Jiachadui rock mass

    样品含量(g/t)Th/U同位素比值年龄/Ma
    232Th238U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    JCD2-TW1119553610.220.05340.00120.40620.01020.05470.00083465034673435
    JCD2-TW282738330.220.05240.00110.39810.00870.05480.00053025034063443
    JCD2-TW3132253780.250.05300.00120.40250.01020.05460.00073285634373424
    JCD2-TW492341220.220.05400.00120.41720.00970.05570.00053695235473503
    JCD2-TW5132253700.250.05380.00120.40690.00940.05460.00073614434773434
    JCD2-TW6103043710.240.05420.00130.41350.00980.05500.00053895435173453
    JCD2-TW7137956990.240.05280.00120.40190.00990.05490.00063205434373454
    JCD2-TW8145656340.260.05370.00130.40720.01020.05480.00063675634773444
    JCD2-TW9116247620.240.05310.00140.40950.01130.05550.00063325934883484
    JCD2-TW10109941960.260.05310.00120.40790.00950.05530.00063325234773474
    JCD2-TW11103433170.310.05680.00150.43410.01100.05520.00064835336683464
    JCD2-TW12110043870.250.05590.00130.43010.01040.05530.00064565236373473
    JCD2-TW13134751540.260.05350.00120.40980.00910.05510.00043505234973463
    JCD2-TW14153859900.260.05320.00120.40740.00940.05490.00063455234773454
    JCD2-TW15137755880.250.05260.00130.40300.00990.05480.00063225634473444
    下载: 导出CSV

    表 3  加查堆岩体和邻区其他典型类型火山岩微量元素对比

    Table 3.  Trace element comparison between Jiachadui rock mass and adjacent areas

    岩石类型 Co Cr Zr V Sc Nb Y Zr/Y Sc/Cr Cr/V Rb/Sr Ba/Rb Ba/Sr
    加查堆岩体闪长岩 8.82 16.9 174 66.93 11.43 14.7 43.53 4 0.68 0.25 0.62 3.43 2.14
    羌塘安山岩[29] 20.85 33.27 141.09 225.07 27.85 9.28 19.83 7.11 0.84 0.15 0.097 11.45 1.11
    啊扎侵入体闪长岩[30] 18.32 16.69 105.32 88.48 - 5.6 8.66 12.16 - 0.19 0.08 8.70 0.71
    丝波绒曲花岗闪长岩[31] 11.8 14 136 89.8 7.81 4.27 12.3 11.06 0.56 0.16 0.10 9.81 0.97
    下载: 导出CSV
  • [1]

    黄玉蓬, 邹金汐, 刘清强, 等. 滇西北中甸甭哥碱性杂岩体岩相学和矿物学特征及其地质意义[J]. 矿产综合利用, 2022(1):103-118.HUANG Y P, ZOU J X, LIU Q Q, et al. Petrographical and mineralogical characteristics of Bengge alkaline igneous complex in Zhongdian, Western Yunnan and its geological significance[J]. Multipurpose Utilization of Mineral Resources, 2022(1):103-118.

    HUANG Y P, ZOU J X, LIU Q Q, et al. Petrographical and mineralogical characteristics of Bengge alkaline igneous complex in Zhongdian, Western Yunnan and its geological significance[J]. Multipurpose Utilization of Mineral Resources, 2022(1):103-118.

    [2]

    翟明国. 花岗岩: 大陆地质研究的突破口以及若干关键科学问题——“岩石学报”花岗岩专辑代序[J]. 岩石学报, 2017, 33(5):1369-1380.ZHAI M G. Granites: leading study issue for continental evolution[J]. Acta Petrologica Sinica, 2017, 33(5):1369-1380.

    ZHAI M G. Granites: leading study issue for continental evolution[J]. Acta Petrologica Sinica, 2017, 33(5):1369-1380.

    [3]

    王孝磊. 花岗岩研究的若干新进展与主要科学问题[J]. 岩石学报, 2017, 33(5):1445-1458.WANG X L. Some new research progresses and main scientific problems of granitic rocks[J]. Acta Petrologica Sinica, 2017, 33(5):1445-1458.

    WANG X L. Some new research progresses and main scientific problems of granitic rocks[J]. Acta Petrologica Sinica, 2017, 33(5):1445-1458.

    [4]

    张旗. 有关埃达克岩实验应用中几个问题的探讨[J]. 岩石矿物学杂志, 2015, 34(2):257-270.ZHANG Q. A tentative discussion on the experimental study of adakite[J]. Acta Petrologica Et Mineralogica, 2015, 34(2):257-270. doi: 10.3969/j.issn.1000-6524.2015.02.012

    ZHANG Q. A tentative discussion on the experimental study of adakite[J]. Acta Petrologica Et Mineralogica, 2015, 34(2):257-270. doi: 10.3969/j.issn.1000-6524.2015.02.012

    [5]

    谭洪旗, 朱志敏, 周雄, 等. 川西九龙地区两期伟晶岩型稀有金属成矿作用[J]. 矿产综合利用, 2022(1):18-28.TAN H Q, ZHU Z M, ZHOU X, et al. Two periods rare metal mineralization of the pegmatite in Jiulong Area, Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022(1):18-28.

    TAN H Q, ZHU Z M, ZHOU X, et al. Two periods rare metal mineralization of the pegmatite in Jiulong Area, Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022(1):18-28.

    [6]

    徐夕生, 贺振宇. 花岗岩研究进展[J]. 矿物岩石地球化学通报, 2012, 31(3):205-209.XU X S, HE Z Y. Progress in granite studies[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(3):205-209.

    XU X S, HE Z Y. Progress in granite studies[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(3):205-209.

    [7]

    张旗, 焦守涛, 李承东, 等. 花岗岩与大陆构造、岩浆热场与成矿[J]. 岩石学报, 2017, 33(5):1524-1540.ZHANG Q, JIAO S T, LI C D, et al. Granite and continental tectonics, magma thermal field and metallgenesis[J]. Acta Petrologica Sinica, 2017, 33(5):1524-1540.

    ZHANG Q, JIAO S T, LI C D, et al. Granite and continental tectonics, magma thermal field and metallgenesis[J]. Acta Petrologica Sinica, 2017, 33(5):1524-1540.

    [8]

    潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3):521-533.PAN G T, MO X X, HOU Z Q, et al. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 2006, 22(3):521-533.

    PAN G T, MO X X, HOU Z Q, et al. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 2006, 22(3):521-533.

    [9]

    莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6):43-51.MO X X, PAN G T. From the Tethys to the formation of the Qinghai-Tibet Plateau: constrained by tectono-magmatic events[J]. Earth Science Frontiers, 2006, 13(6):43-51.

    MO X X, PAN G T. From the Tethys to the formation of the Qinghai-Tibet Plateau: constrained by tectono-magmatic events[J]. Earth Science Frontiers, 2006, 13(6):43-51.

    [10]

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211

    [11]

    Ma Y, Yang T, Yang Z, et al. Paleomagnetism and U-Pb zircon geochronology of Lower Cretaceous lava flows from the western Lhasa terrane: New constraints on the India-Asiacollision process and intracontinental deformation within Asia[J]. Journal of Geophysical Research:Solid Earth, 2014, 119:7404-7424. doi: 10.1002/2014JB011362

    [12]

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research. 2004.28(3): 353-370.

    [13]

    谭细娟, 郭超, 凤永刚, 等. 激光剥蚀系统气体流速变化对LA-ICP-MS锆石U-Pb定年精度的影响[J]. 岩矿测试, 2022, 41(4):554-563.TAN X J, GUO C, FENG Y G, et al. Effect of gas flow rates in laser ablation system on accuracy and precision of zircon U-Pb dating analysis by LA-ICP-MS[J]. Rock and Mineral Analysis, 2022, 41(4):554-563.

    TAN X J, GUO C, FENG Y G, et al. Effect of gas flow rates in laser ablation system on accuracy and precision of zircon U-Pb dating analysis by LA-ICP-MS[J]. Rock and Mineral Analysis, 2022, 41(4):554-563.

    [14]

    Irivine T N, Baragar W R A. A guide to the chemical classification of the common vocanic rock[J]. s. Canad. J. Earth. Sci., 1971(8):523-548.

    [15]

    Middlemost E A K. Naming materials in magma-igneous rock system[J]. Earth Sci. Rev., 1994(37):215-224.

    [16]

    Richwood P C. Boundary lines within petrologic diaframs which use oxides of major and minor elements[J]. Lithos, 1989(22):247-263.

    [17]

    Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalt: implications for mantle composition and processes[J]. Sanders A D, Norry M J(Eds. ), Magmatism in the Ocean Basins: Geological Society Special Publication. 1989(24) pp. 313-345.

    [18]

    Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Gaorogens: implications for a pre-Rodinia supercontinent[J]. Earth Science Review, 2002(59):125-162.

    [19]

    Boynton W W. Cosmochemistry of the rare earth elements: Meteorite studies[M]. In: Henderson P, ed. Rare Earth Element Geochemistry: Developments in Geochemistry, Amstordam: Elsevier, 1984, 63-114.

    [20]

    Rowley DB. Stable isotope-based paleoaltimetry: Theory and Validation[J]. Reviews in Mineralogy and Geochemistry. 2007, 66: 23-52.

    [21]

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16):1588-1604.WU Y B, ZHENG Y F. Zircon genetic mineralogy and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16):1588-1604.

    WU Y B, ZHENG Y F. Zircon genetic mineralogy and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16):1588-1604.

    [22]

    Whitney J a. The origin of granite: the role and source of water in the evolution of granitic magmas[J]. Geological Society of America Bulletin, 1988(100):1886-1897.

    [23]

    Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999(46):605-626.

    [24]

    Dostal J, et al. Volcanism in the central western Carpathians(Slovakia): basin-and range type rifting in the southern Laurussian margin[J]. Internal Journal of Earth Sciences, 2003, 92(1):27-35. doi: 10.1007/s00531-002-0307-6

    [25]

    Rudnick R L, Gao S. Composition of the continental crust[M]. In: Rudnick R L, eds. The Crust. Treaties on Geochemistry, 3. Oxford: Elsevier Pergamon, 2003, 1-64.

    [26]

    CrawfordAJ, FalloonTJ, and EgginsS, The origin of island arc high-aluminabasalts[J]. Contributions to Mineralogy and Petrology, v. 97, 1987, 417–430.

    [27]

    Zhu DC, MoXX, Zhao ZD, et al. Presence of Permian extension- and arc-typemagmatism in southern Tibet: Paleogeographic implications[J]. GSA Bulletin. 2010, 122: 979-993.

    [28]

    Collis W J,et al. Nature and origin of A type gianites with paticular reference to Southeastern Australia[J]. Contrib. Miner. Petro., 1982(80):189-200.

    [29]

    江庆源. 西藏羌塘中部早石炭世弧火山岩的发现及其构造意义[D]. 吉林: 吉林大学. 2015.JIANG Q Y. The discovery and tectonic implications of early Carboniferous arc magmatism in central Qiangtang, Xizang Plateau[D]. Jilin: Jilin University. 2015.

    JIANG Q Y. The discovery and tectonic implications of early Carboniferous arc magmatism in central Qiangtang, Xizang Plateau[D]. Jilin: Jilin University. 2015.

    [30]

    欧新锋, 杨锋, 康志强, 等. 西藏拉萨地块南部啊扎侵入体锆石U-Pb年龄、地球化学特征及其对新特提斯洋演化历史的指示[J]. 地质通报, 2022, 41(5):774-787.OU X F, YANG F, KANG Z Q, et al. Zircon U-Pb age and geochemical characteristics of the Azha intrusion in the southern Lhasa Block, Tibet and their indications for the evolutionary history of the Neo-Tethys[J]. Geological Bulletin of China, 2022, 41(5):774-787.

    OU X F, YANG F, KANG Z Q, et al. Zircon U-Pb age and geochemical characteristics of the Azha intrusion in the southern Lhasa Block, Tibet and their indications for the evolutionary history of the Neo-Tethys[J]. Geological Bulletin of China, 2022, 41(5):774-787.

    [31]

    李艳芳, 邱检生, 王睿强, 等. 冈底斯东段加查县丝波绒曲早侏罗-始新世复式岩体成因及其对构造演化的启示[J]. 地质学报, 2019, 93(12):3020-3046.LI Y F, QIU J S, WANG R Q, et al. Petrogenesis of the early Jurassic-Eocene composite pluton in Siborongqu, Gyaca County, eastern segment of the Gangdese Belt, and its tectonic implications[J]. Acta Geologica Sinica, 2019, 93(12):3020-3046.

    LI Y F, QIU J S, WANG R Q, et al. Petrogenesis of the early Jurassic-Eocene composite pluton in Siborongqu, Gyaca County, eastern segment of the Gangdese Belt, and its tectonic implications[J]. Acta Geologica Sinica, 2019, 93(12):3020-3046.

    [32]

    王文鲁, 等. 西藏南部冈底斯带东段晚白垩世中性侵入岩的成因矿物学研究: 对构建穿地壳岩浆系统的启示[J/OL]. 地学前缘. 2022: 1-39.WANG W L, et al. Research of genetic mineralogy of late Cretaceous intermediate intrusive rocks in the eastern segment of the Gangdese Belt, Southern Tibet: construction of a trans-crustal magma system[J/OL]. Earth Science Frontiers. 2022: 1-39.

    WANG W L, et al. Research of genetic mineralogy of late Cretaceous intermediate intrusive rocks in the eastern segment of the Gangdese Belt, Southern Tibet: construction of a trans-crustal magma system[J/OL]. Earth Science Frontiers. 2022: 1-39.

    [33]

    Pin C, Paquette J L. A mantle-derived bimodal suite in the Hercynian Belt: Ndisotope and trace element evidence for a subduction-related rift origin of the late DevonianBrevenne metavolcanics, Massif Central (France)[J]. Contributions to Mineralogy and Petrology. 1997(129): 222–238.

    [34]

    Zhu D C, Pan G T, Mo X X, et al. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: aprobable example of plume–lithosphere interaction[J]. Journal of Asian Earth Sciences. 2007(29): 320–335.

    [35]

    刘文灿, 万晓樵, 梁定益, 等. 江孜县幅、亚东县幅地质调查新成果及主要进展[J]. 地质通报, 2004, 23(5-6):444-450.LIU W C, WAN X Q, LIANG D Y, et al. New achievements and main progress in geological survey of the Gyangze and Yadong sheets[J]. Geological Bulletin of China, 2004, 23(5-6):444-450.

    LIU W C, WAN X Q, LIANG D Y, et al. New achievements and main progress in geological survey of the Gyangze and Yadong sheets[J]. Geological Bulletin of China, 2004, 23(5-6):444-450.

    [36]

    潘桂棠, 朱弟成, 王立全, 等. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J]. 地学前缘, 2004, 11(4):371-382.PAN G T, ZHU D C, WANG L Q, et al. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: Evidence from geology and geophysics[J]. Earth Science Frontiers, 2004, 11(4):371-382.

    PAN G T, ZHU D C, WANG L Q, et al. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: Evidence from geology and geophysics[J]. Earth Science Frontiers, 2004, 11(4):371-382.

    [37]

    王立全, 等. 西藏冈底斯带石炭纪—二叠纪岛弧造山作用: 火山岩和地球化学证据[J]. 地质通报. 2008, 27(98): 1509-1534.WANG L Q, et al. Carboniferous-Permian island arc orogenesis in the Gangdise belt, Tibet, China: evidence from volcanic rocks and geochemistry[J]. Geological Bulletin of China, 2008, 27(98): 1509-1534.

    WANG L Q, et al. Carboniferous-Permian island arc orogenesis in the Gangdise belt, Tibet, China: evidence from volcanic rocks and geochemistry[J]. Geological Bulletin of China, 2008, 27(98): 1509-1534.

    [38]

    周士旭, 等. 藏东同普二叠纪高分异花岗岩的锆石U-Pb年龄和岩石成因[J]. 岩石学报. 2017, 33(8)-2509-22.ZHOU S X, et al. Zircon U-Pb age and petrogenesis of the Permian highly fractionated granites in Tongpu, eastern Tibet[J]. Acta Petrologica Sinica. 2017, 33(8)-2509-22.

    ZHOU S X, et al. Zircon U-Pb age and petrogenesis of the Permian highly fractionated granites in Tongpu, eastern Tibet[J]. Acta Petrologica Sinica. 2017, 33(8)-2509-22.

  • 加载中

(10)

(3)

计量
  • 文章访问数:  503
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2022-09-29
刊出日期:  2024-02-25

目录