熊耳山矿集区小河流域水体及底泥重金属污染评价

张登峰, 孙建伟. 熊耳山矿集区小河流域水体及底泥重金属污染评价[J]. 矿产综合利用, 2024, 45(1): 109-119. doi: 10.3969/j.issn.1000-6532.2024.01.013
引用本文: 张登峰, 孙建伟. 熊耳山矿集区小河流域水体及底泥重金属污染评价[J]. 矿产综合利用, 2024, 45(1): 109-119. doi: 10.3969/j.issn.1000-6532.2024.01.013
ZHANG Dengfeng, SUN Jianwei. Water Body and Sediment of Xiaohe Watershed in Xiongershan Ore Concentration Area Heavy Metal Pollution Assessment[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 109-119. doi: 10.3969/j.issn.1000-6532.2024.01.013
Citation: ZHANG Dengfeng, SUN Jianwei. Water Body and Sediment of Xiaohe Watershed in Xiongershan Ore Concentration Area Heavy Metal Pollution Assessment[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 109-119. doi: 10.3969/j.issn.1000-6532.2024.01.013

熊耳山矿集区小河流域水体及底泥重金属污染评价

  • 基金项目: 中国地质调查局地质大调查项目(DD20208079)
详细信息
    作者简介: 张登峰(1982-)男,学士,高级工程师,研究方向为资源勘查
    通讯作者: 孙建伟(1982-),男,硕士,高级工程师,研究方向为国土空间生态修复。
  • 中图分类号: X522

Water Body and Sediment of Xiaohe Watershed in Xiongershan Ore Concentration Area Heavy Metal Pollution Assessment

More Information
  • 这是一篇矿山环境领域的论文。河流是矿产资源开发过程中产生的重金属最主要的迁移途径和汇聚地,熊耳山矿集区矿产资源开发对河流的影响程度尚不清晰。为准确掌握熊耳山矿集区矿产资源开发对河流重金属的影响,以矿集区内小河流域的水体和底泥为研究对象,分析了小河干流及其主要支流水体和底泥中Cu、Pb、Zn、Cd、As、Hg重金属含量特征。用单项污染指数和内梅罗综合污染指数法对水体重金属污染程度进行评价;用地质累积指数法和质量基准法对河流底泥中重金属累积程度和污染程度进行评价。结果表明,小河流域水体中6种重金属平均含量在0.08~289.86 μg/L之间,污染程度As>Hg> Cd>Pb>Cu>Zn,主要重金属污染物为As、Hg,主要污染河段分布于矿业活动强烈区,矿产资源开发是引起河流水体污染的主要因素。Cu、Pb、Zn、Cd、As、Hg在小河流域河道底泥中累积效应显著,重金属污染程度严重,质量基准法评价结果显示,小河流域底泥中Pb、Cd、Cu、Zn、As、Hg所有样品均严重污染,综合地质累积指数法和质量基准法评价结果,小河流域河道底泥污染程度:Pb>Cd >Cu>Zn>As>Hg,其中 Pb、Zn、Cu、Cd是主要污染元素, Hg,As是次要污染元素。研究认为:熊耳山矿集区矿产资源开发是引起小河流域水体、河道底泥重金属污染的主要因素,已经对河流水体和底泥造成不同程度的重金属污染,加强矿产资源开发全过程的源头治理和监管,是保护和改善小河流域重金属污染的根本手段。

  • 加载中
  • 图 1  小河流域水质样品采样点分布

    Figure 1. 

    图 2  小河流域底泥样品采样点分布

    Figure 2. 

    图 3  小河流域底泥重金属含量分布

    Figure 3. 

    表 1  水质样品分析方法

    Table 1.  Methods for analysis of water quality samples

    分析元素样品类型执行标准仪器设备及型号检测限/(μg/L)
    河水样品HJ700-2014电感耦合等离子体质谱仪Agilent 7850 ICP-MS0.67
    河水样品HJ700-2014电感耦合等离子体质谱仪Agilent 7850 ICP-MS0.08
    河水样品H 700-2014电感耦合等离子体质谱仪Agilent 7850 ICP-MS0.09
    河水样品H 700-2014电感耦合等离子体质谱仪Agilent 7850 ICP-MS0.05
    河水样品H 694-2014原子荧光分光光度计AFS-230E0.3
    河水样品H 694-2014原子荧光分光光度计XGY-1011A0.04
    下载: 导出CSV

    表 2  底泥样品分析方法

    Table 2.  Methods for analysis of sediment samples

    分析元素样品类型执行标准仪器设备及型号检测限/(mg/kg)
    底泥样品H 803-2016电感耦合等离子体质谱仪Agilent 7850 ICP-MS7
    底泥样品H 803-2016电感耦合等离子体质谱仪Agilent 7850 ICP-MS0.5
    底泥样品H 803-2016电感耦合等离子体质谱仪Agilent 7850 ICP-MS2
    底泥样品H 803-2016电感耦合等离子体质谱仪Agilent 7850 ICP-MS0.07
    底泥样品H 680-2013原子荧光分光光度计AFS-230E0.01
    底泥样品H 680-2013原子荧光分光光度计XGY-1011A0.002
    下载: 导出CSV

    表 3  地表水单因子污染程度分级

    Table 3.  Classification of single factor pollution degree of surface water

    污染等级划分 单项污染指数(Pi 污染程度
    Pi<1 未受污染
    1≤Pi<2 轻微污染
    2≤Pi<3 轻度污染
    3≤Pi<5 中度污染
    Pi≥5 重度污染
    下载: 导出CSV

    表 4  地表水综合污染程度分级

    Table 4.  Classification of comprehensive pollution degree of surface water

    污染等级划分 综合污染指数(Pz 污染程度
    Pz≤0.7 未受污染
    0.7<Pz≤1.0 轻微污染(警戒线)
    1.0<Pz≤2.0 轻度污染
    2.0<Pz≤.3.0 中度污染
    Pz>3.0 重度污染
    下载: 导出CSV

    表 5  底泥中重金属生物毒性阈值

    Table 5.  Biological toxicity threshold of heavy metals in sediment

    阈值AsCdCrCuHgPbZn
    ERL8.21.281340.1546.7150
    ERM709.63702700.71218410
    下载: 导出CSV

    表 6  地质累积指数分级

    Table 6.  Classification of geological accumulation index

    $ {I_{geo}} $(Forstner)级别污染程度$ {I_{geo}} $(Anon)级别污染程度
    <01无影响<01无影响~轻度影响
    0~12无影响~中度影响0~12中度影响
    1~23中度影响1~33中度影响~强影响
    2~34中度影响~强影响3~54强影响
    3~45强影响>55极强影响
    4~56强影响~极强影响
    >57极强影响
    下载: 导出CSV

    表 7  小河流域水中重金属含量统计特征

    Table 7.  Statistical characteristics of heavy metals in water of small river basin

    元素 最大值/(μg/L) 最小值/(μg/L) 平均值/( μg/L) 标准差 变异系数/% 地表水环境质量Ⅲ级标准/(μg/L)
    Cu1069.000.4122.60139.986191000
    Pb859.000.1017.19113.5466050
    Zn163.000.618.6726.803091000
    Cd71.010.062.9012.454295.00
    As15242.001.50389.862062.3952950
    Hg0.330.050.080.05630.10
    下载: 导出CSV

    表 8  小河流域水中重金属单项污染指数和综合污染指数

    Table 8.  Single pollution index and comprehensive pollution index of heavy metals in water of small river basin

    样号 单项污染指数 综合污染指数
    Cu Pb Zn Cd As Hg
    S1 0.006 0.043 0.001 0.129 0.720 0.525
    S6 0.005 0.007 0.004 2.219 3.300 2.461
    S7 0.004 0.003 0.006 0.014 0.272 2.500 1.798
    S9 0.006 0.008 0.004 0.192 84.189 2.000 60.395
    S12 1.069 0.199 0.036 0.494 0.030 0.550 0.806
    S15 0.004 0.008 0.163 0.098 0.156 1.300 0.942
    S17 0.003 0.007 0.015 0.148 1.000 0.726
    S20 0.003 0.022 0.007 0.144 0.900 0.654
    S25 0.002 0.004 0.144 0.600 0.444
    S27 0.005 0.002 0.004 0.148 0.600 0.438
    S29 0.003 0.003 0.002 0.148 0.600 0.437
    S30 0.002 0.092 0.002 0.156 0.600 0.441
    S31 0.001 0.048 0.002 0.150 0.500 0.367
    S32 0.005 0.042 0.003 0.026 0.172 0.500 0.364
    S34 0.000 0.025 0.002 0.182 0.134
    S35 0.005 0.043 0.001 0.012 0.174 0.500 0.364
    S36 0.006 0.024 0.001 0.018 0.180 0.500 0.364
    S37 0.001 0.013 0.003 0.154 0.500 0.366
    S38 0.005 0.065 0.002 0.102 0.214 0.500 0.369
    S39 0.004 0.168 0.007 0.016 2.540 0.600 1.839
    S44 0.006 0.254 0.006 0.084 0.104 0.900 0.656
    S45 0.006 0.277 0.001 0.070 17.080 0.800 12.267
    S46 0.024 17.180 0.003 0.360 304.840 0.900 218.896
    S47 0.001 0.026 0.004 14.202 0.164 0.600 10.197
    S48 0.001 0.047 0.002 0.196 0.150 0.600 0.440
    S49 0.001 0.033 0.126 3.880 0.600 2.821
    S50 0.003 0.036 0.022 0.128 0.600 0.439
    S52 0.002 0.034 0.001 0.172 5.040 3.640
    S53 0.003 0.041 0.002 0.282 4.980 0.600 3.590
    S54 0.000 0.030 0.024 0.140 0.500 0.367
    S55 0.003 0.046 0.010 0.288 5.340 0.600 3.848
    S57 0.002 0.037 0.001 0.108 5.360 3.869
    S58 0.003 0.026 0.352 0.138 0.500 0.382
    S59 0.004 0.025 0.001 0.336 0.138 0.500 0.373
    S60 0.003 0.028 0.090 0.030 0.500 0.365
    S61 0.002 0.004 0.136 0.600 0.444
    S63 0.002 0.021 0.004 0.126 0.700 0.509
    S64 0.002 0.013 0.124 0.700 0.517
    S65 0.002 0.006 0.128 0.600 0.444
    S66 0.002 0.004 0.015 0.138 0.900 0.654
    S67 0.002 0.006 0.130 0.600 0.444
    S68 0.002 0.005 0.128 0.700 0.517
    S69 0.002 0.005 0.120 0.600 0.443
    S70 0.002 0.005 0.114 0.700 0.516
    S71 0.001 0.006 0.126 0.700 0.516
    S72 0.000 0.008 0.118 0.600 0.443
    S73 0.001 0.005 0.118 0.600 0.443
    S75 0.001 0.008 0.124 0.600 0.444
    S76 0.001 0.007 0.116 0.700 0.516
    S78 0.002 0.020 0.001 0.048 0.036 0.700 0.504
    S79 0.002 0.024 0.001 0.048 0.962 0.700 0.710
    S81 0.001 0.014 0.074 0.700 0.514
    S82 0.002 0.021 0.044 0.036 0.700 0.508
    S83 0.047 0.056 0.002 0.054 0.842 0.700 0.628
    S84 0.006 0.027 0.002 0.078 0.700 0.508
    S85 0.004 0.033 0.002 0.050 0.788 0.700 0.587
    S86 0.003 0.018 0.052 0.718 0.700 0.550
    下载: 导出CSV

    表 9  小河流域底泥中重金属含量统计特征

    Table 9.  Statistical characteristics of heavy metals in sediment of small river basin

    元素 最大值/
    (mg/kg)
    最小值/
    (mg/kg)
    平均值/
    (mg/kg)
    标准差 变异系数/% 黄河中游土壤
    背景值/(mg/kg)
    表层土土壤
    筛选值/(mg/kg)
    Cu 1178.00 68.00 291.00 275.97 95 24.00 100.00
    Pb 13545.00 216.00 2116.00 2676.64 127 23.00 170.00
    Zn 2345.00 198.00 780.00 569.01 73 67.00 300.00
    Cd 11.63 0.84 3.70 3.07 83 0.155 0.60
    As 1420.30 3.38 191.40 349.12 182 12.00 25.00
    Hg 8.59 0.10 1.78 1.74 98 0.042 3.40
    下载: 导出CSV

    表 10  河水底泥重金属地质累积指数及污染级别

    Table 10.  Geological accumulation index and pollution level of heavy metals in river sediment

    元素 最小值 最大值 平均值 背景值 各级样品所占比例/%
    0级 1级 2级 3级 4级 5级 6级
    Cu 0.92 5.03 2.57 24 0 3.13 28.13 34.34 21.88 6.25 6.25
    Pb 2.64 8.62 5.18 23 0 0 0 6.25 12.5 28.13 53.13
    Zn 0.98 4.54 2.63 67 0 31.3 28.13 34.34 21.88 12.5 0
    Cd 1.85 5.64 3.55 0.155 0 0 3.13 25 37.5 21.88 12.5
    As -2.41 6.30 1.21 12.00 43.75 9.38 3.13 12.5 18.75 3.13 9.38
    Hg -9.30 -2.87 -5.89 42 100 0 0 0 0 0 0
    下载: 导出CSV
  • [1]

    宋文, 成少平, 迟晓杰, 等. 重金属污染土壤遥感监测研究进展[J]. 矿产综合利用, 2021(4):21-28.SONG W, CHENG S P, CHI X J, et al. Research progress on remediation of heavy metal contaminated soil monitored by remote sensing[J]. Multipurpose Utilization of Mineral Resources, 2021(4):21-28.

    SONG W, CHENG S P, CHI X J, et al. Research progress on remediation of heavy metal contaminated soil monitored by remote sensing[J]. Multipurpose Utilization of Mineral Resources, 2021(4):21-28.

    [2]

    端爱玲, 杨树俊, 韩张雄, 等. 矿区土壤重金属污染化学修复及强化方法研究进展[J]. 矿产综合利用, 2022(6):104-109.DUAN A L, YANG S J, HAN Z X, et al. Research progress on chemical remediation and strengthening methods of heavy metal contaminated soil in mining areas[J]. Multipurpose Utilization of Mineral Resources, 2022(6):104-109.

    DUAN A L, YANG S J, HAN Z X, et al. Research progress on chemical remediation and strengthening methods of heavy metal contaminated soil in mining areas[J]. Multipurpose Utilization of Mineral Resources, 2022(6):104-109.

    [3]

    周芬琦, 王小芳, 赵新如, 等. 安徽庐江尾矿区河流重金属分布及污染评价[J]. 环境化学, 2020, 39(10) : 2792-2803.ZHOU F Q, WANG X F, ZHAO X R, et al. Heavy metal distribution and pollution evaluation of rivers along mining area in Lujiang County, Anhui Province[J]. Environmental Chemistry, 2020, 39(3): 2792-2803.

    ZHOU F Q, WANG X F, ZHAO X R, et al. Heavy metal distribution and pollution evaluation of rivers along mining area in Lujiang County, Anhui Province[J]. Environmental Chemistry, 2020, 39(3): 2792-2803.

    [4]

    李瑞娟, 周冰. 安徽铜陵铜尾矿土壤污染评价及综合利用研究[J]. 矿产综合利用, 2021(4):36-40.LI R J, ZHOU B. Study on soil pollution evaluation and comprehensive utilization of Tongling tailings in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40.

    LI R J, ZHOU B. Study on soil pollution evaluation and comprehensive utilization of Tongling tailings in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40.

    [5]

    Meng Y B, Zhou L F, He S L, et al. A heavy metal module coupled with the SWAT model and its preliminary application in a mine-impacted watershed in China[J]. Science of the Total Environment, 2018, 613/614:1207-1219. doi: 10.1016/j.scitotenv.2017.09.179

    [6]

    刘雨昕, 路星雯, 宁寻安, 等. 浸提法去除铁尾矿中重金属Pb、Zn、Cu、Cr、和Ni的研究[J]. 矿产综合利用, 2022(4):33-40.LIU Y X, LU X W, NING X A, et al. Removal of Pb, Zn, Cu, Cr and Ni in iron tailings by leaching[J]. Multipurpose Utilization of Mineral Resources, 2022(4):33-40

    LIU Y X, LU X W, NING X A, et al. Removal of Pb, Zn, Cu, Cr and Ni in iron tailings by leaching[J]. Multipurpose Utilization of Mineral Resources, 2022(4):33-40

    [7]

    罗妍, 黄艺, 余大明, 等. 东北典型煤矿区重金属环境评价与分析[J]. 矿产综合利用, 2021(4):50-58.LUO Y, HUANG Y, YU D M, et al. Environmental assessment of heavy metals in typical coal mining areas in Northeast China[J]. Multipurpose Utilization of Mineral Resources, 2021(4):50-58. doi: 10.3969/j.issn.1000-6532.2021.04.008

    LUO Y, HUANG Y, YU D M, et al. Environmental assessment of heavy metals in typical coal mining areas in Northeast China[J]. Multipurpose Utilization of Mineral Resources, 2021(4):50-58. doi: 10.3969/j.issn.1000-6532.2021.04.008

    [8]

    赵连兵, 先永俊, 文书明, 等. 铅锌选矿废水净化处理研究概述[J]. 矿产综合利用, 2022(3):100-106.ZHAO L B, XIAN Y J, WEN S M, et al. Brief introduction of lead and zinc beneficiation wastewater treatment[J]. Multipurpose Utilization of Mineral Resources, 2022(3):100-106.

    ZHAO L B, XIAN Y J, WEN S M, et al. Brief introduction of lead and zinc beneficiation wastewater treatment[J]. Multipurpose Utilization of Mineral Resources, 2022(3):100-106.

    [9]

    刘雅瑾, 雷国元. 冶金工业园周边水域底泥中重金属污染评价[J]. 矿产综合利用, 2017(4):89-94.LIU Y J, LEI G Y. Pollution Assessment of heavy metals in sediment of the surrounding waters of metallurgical industrial park[J]. Multipurpose Utilization of Mineral Resources, 2017(4):89-94.

    LIU Y J, LEI G Y. Pollution Assessment of heavy metals in sediment of the surrounding waters of metallurgical industrial park[J]. Multipurpose Utilization of Mineral Resources, 2017(4):89-94.

    [10]

    刘瑞平, 徐友宁, 张江华, 等. 青藏高原典型金属矿山河流重金属污染对比[J]. 地质通报, 2018, 37(12):2154-2168.LIU R P, XU Y N, ZHANG J H, et al. A comparative study of the content of heavy metals in typical metallic mine rivers of the Tibetan Plateau[J]. Geological Bulletin of China, 2018, 37(12):2154-2168.

    LIU R P, XU Y N, ZHANG J H, et al. A comparative study of the content of heavy metals in typical metallic mine rivers of the Tibetan Plateau[J]. Geological Bulletin of China, 2018, 37(12):2154-2168.

    [11]

    徐友宁, 张江华. 陕西潼关金矿区太峪河底泥重金属元素的含量及污染评价[J]. 地质通报, 2008, 27(8): 1263-1271.XU Y N, ZHANG J H. Contents of heavy metals in bottom sediments of the Taiyu River in the Tongguan gold mining area, Shanxi, China, and contamination assessments[J]. Geological Bulletin of China, 2008, 27(8): 1263-1671.

    XU Y N, ZHANG J H. Contents of heavy metals in bottom sediments of the Taiyu River in the Tongguan gold mining area, Shanxi, China, and contamination assessments[J]. Geological Bulletin of China, 2008, 27(8): 1263-1671.

    [12]

    高云峰, 徐友宁, 张江华. 秦岭某钼矿区开发对东川河流域Cd的影响[J]. 地质通报, 2018, 37(12):2241-2250.GAO Y F, XU Y N, ZHANG J H. Evaluation of Cd pollution of a molybdenum ore area in Dongchuan River basin of the Qinling Mountain[J]. Geological Bulletin of China, 2018, 37(12):2241-2250.

    GAO Y F, XU Y N, ZHANG J H. Evaluation of Cd pollution of a molybdenum ore area in Dongchuan River basin of the Qinling Mountain[J]. Geological Bulletin of China, 2018, 37(12):2241-2250.

    [13]

    刘应冬, 代力, 张卫华. 青海某金矿矿集区土壤重金属污染评价及综合利用讨论[J]矿产综合利用, 2018(5): 97-100.LIU Y D, DAI L, ZHANG W H. Assessment of soil heavy metals pollution and comprehensive utilization in a gold mine area in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2018(5): 97-100.

    LIU Y D, DAI L, ZHANG W H. Assessment of soil heavy metals pollution and comprehensive utilization in a gold mine area in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2018(5): 97-100.

    [14]

    温春云, 刘聚涛, 胡芳, 等. 鄱阳湖水质变化特征及水体富营养化评价[J]. 中国农村水利水电, 2020(11):83-88.WEN C Y, LIU J T, HU F, et al. Water quality change characteristics and eutrophication assessment of Poyang lake[J]. Rural water conservancy and hydropower in China, 2020(11):83-88. doi: 10.3969/j.issn.1007-2284.2020.11.015

    WEN C Y, LIU J T, HU F, et al. Water quality change characteristics and eutrophication assessment of Poyang lake[J]. Rural water conservancy and hydropower in China, 2020(11):83-88. doi: 10.3969/j.issn.1007-2284.2020.11.015

    [15]

    李苏, 闫志宏, 徐丹, 等. 改进的内梅罗指数法在水库水质评价中的应用[J]. 科学技术与工程, 2020, 20(31):13079-13084.LI S, YAN Z H, XU D, et al. Application of improved nemerow index method in reservoir water quality evaluation[J]. Science Technology and Engineering, 2020, 20(31):13079-13084.

    LI S, YAN Z H, XU D, et al. Application of improved nemerow index method in reservoir water quality evaluation[J]. Science Technology and Engineering, 2020, 20(31):13079-13084.

    [16]

    宁阳明, 尹发能, 李香波. 几种水质评价方法在长江干流中的应用[J]. 西南大学学报(自然科学版), 2020, 42(12):126-133.NING Y M, YIN F N, LI X B. Application of several evaluation methods for river water quality in the Yangtze River mainstream[J]. Journal of Southwest University(Natural Science), 2020, 42(12):126-133.

    NING Y M, YIN F N, LI X B. Application of several evaluation methods for river water quality in the Yangtze River mainstream[J]. Journal of Southwest University(Natural Science), 2020, 42(12):126-133.

    [17]

    李军. 湘江长株潭段底泥重金属污染分析与评价[D]. 湖南: 湖南大学, 2008: 12-16.LI J. Analysis and evaluation of heavy metal pollution in sediment of Chang Zhu Tan section of Xiangjiang River[D]. Hunan: Hunan University, 2008: 12-16.

    LI J. Analysis and evaluation of heavy metal pollution in sediment of Chang Zhu Tan section of Xiangjiang River[D]. Hunan: Hunan University, 2008: 12-16.

    [18]

    Long E R, Field L J, MacDonal D D. Predicting toxicity in marine sediments with numerical sediment quality guidelines[J]. Environ- mental Toxicology and Chemistry, 1998, 17(4):714-727. doi: 10.1002/etc.5620170428

    [19]

    LOSKA K, WIECHULA D. Korus I Metal contamination of farming soils affected by industry[J]. Environment International, 2004, 30(2):159-165. doi: 10.1016/S0160-4120(03)00157-0

    [20]

    侯叶青, 杨忠芳, 余涛, 等. 中国土壤地球化学参数. 北京: 地质出版社, 2020, ISBN 978-7-116-11926-0.HOU Y Q, YANG Z F, YU T, et al. Soil geochemical parameters in China: Beijing, Geological Publishing House, 2020, ISBN 978-7-116-11926-0.

    HOU Y Q, YANG Z F, YU T, et al. Soil geochemical parameters in China: Beijing, Geological Publishing House, 2020, ISBN 978-7-116-11926-0.

    [21]

    Forster U. Lecture notes in earth sciences(contaminated sediments)[M]. Berlin Forsterverlag, 1989: 107-109.

    [22]

    胡艳霞, 周连第, 魏长山, 等. 北京水源保护地土壤重金属空间变异及污染特征[J]. 土壤通报, 2013, 44(6):1483-1490.HU Y X, ZHOU L D, WEI C S, et al. Spatial variability and pollution characteristics of soil heavy metals in water source protection sites in Beijing[J]. Soil Bulletin, 2013, 44(6):1483-1490.

    HU Y X, ZHOU L D, WEI C S, et al. Spatial variability and pollution characteristics of soil heavy metals in water source protection sites in Beijing[J]. Soil Bulletin, 2013, 44(6):1483-1490.

    [23]

    王亚维, 王中美, 王益伟, 等. 贵阳市岩溶地下水水化学特征及水质评价[J]. 节水灌溉, 2019(6):60-66.WANG Y W, WANG Z M, WANG Y W, et al. Hydrochemical characteristics and water quality evaluation of Karst groundwater in Guiyang[J]. Water saving irrigation, 2019(6):60-66.

    WANG Y W, WANG Z M, WANG Y W, et al. Hydrochemical characteristics and water quality evaluation of Karst groundwater in Guiyang[J]. Water saving irrigation, 2019(6):60-66.

    [24]

    胡国成, 许振成, 彭晓武, 等. 广东长潭水库表层沉积物重金属污染特征与潜在生态风险评价研究[J]. 农业环境科学学报, 2011, 30(6):1166-1171.HU G C, XU Z C, PENG X W, et al. Pollution characteristics and potential ecological risk assessment of heavy metals in surface sediment from Changtan Reservoir, Guangdong Province, China[J]. Journal of Agro-Environment Science, 2011, 30(6):1166-1171.

    HU G C, XU Z C, PENG X W, et al. Pollution characteristics and potential ecological risk assessment of heavy metals in surface sediment from Changtan Reservoir, Guangdong Province, China[J]. Journal of Agro-Environment Science, 2011, 30(6):1166-1171.

  • 加载中

(3)

(10)

计量
  • 文章访问数:  409
  • PDF下载数:  15
  • 施引文献:  0
出版历程
收稿日期:  2023-06-16
刊出日期:  2024-02-25

目录